Skip to main content
Log in

Clustering categorical data in projected spaces

  • Published:
Data Mining and Knowledge Discovery Aims and scope Submit manuscript

Abstract

The problem of clustering categorical data has been widely investigated and appropriate approaches have been proposed. However, the majority of the existing methods suffer from one or more of the following limitations: (1) difficulty detecting clusters of very low dimensionality embedded in high-dimensional spaces, (2) lack of an automatic mechanism for identifying relevant dimensions for each cluster, (3) lack of an outlier detection mechanism and (4) dependence on a set of parameters that need to be properly tuned. Most of the existing approaches are inadequate for dealing with these four issues in a unified framework. This motivates our effort to propose a fully automatic projected clustering algorithm for high-dimensional categorical data which is capable of facing the four aforementioned issues in a single framework. Our algorithm comprises two phases: (1) outlier handling and (2) clustering in projected spaces. The first phase of the algorithm is based on a probabilistic approach that exploits the beta mixture model to identify and eliminate outlier objects from a data set in a systematic way. In the second phase, the clustering process is based on a novel quality function that allows the identification of projected clusters of low dimensionality embedded in a high-dimensional space without any parameter setting by the user. The suitability of our proposal is demonstrated through empirical studies using synthetic and real data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. http://archive.ics.uci.edu/ml/.

References

  • Aggarwal CC, Yu PS (2002) Redefining clustering for high dimensional applications. IEEE Trans Knowl Data Eng 14(2):210–225

    Article  Google Scholar 

  • Aggarwal CC, Procopiuc C, Wolf JL, Yu PS, Park JS (1999) Fast algorithm for Projected clustering. In: Proceedings of the ACM SIGMOD’99 conference, pp 61–72

  • Andritsos P, Tsaparas P, Miller RJ, Sevcik KC (2004) LIMBO: scalable clustering of categorical data. In: Proceedings of the 9th international conference on extending database technology (EDBT’04), pp 123–146

  • Angiulli F, Pizzuti C (2005) Outlier mining in large high-dimensional data sets. IEEE Trans Knowl Data Eng 17(2):203–215

    Article  MathSciNet  Google Scholar 

  • Bai L, Liang J, Dang C, Cao F (2011) A novel attribute weighting algorithm for clustering high-dimensional categorical data. Pattern Recognit 44(12):2843–2861

    Article  MATH  Google Scholar 

  • Barbara D, Li Y, Couto J (2002) COOLCAT: an entropy-based algorithm for categorical clustering. In: Proceedings of the 11th ACM international conference on information and knowledge management (CIKM’02), pp 582–589

  • Bezdek JC (1981) Pattern recognition with fuzzy objective function algorithms. Plenum, New York

    Book  MATH  Google Scholar 

  • Bouguessa M (2011) An unsupervised approach for identifying spammers in social networks. In: Proceedings of the 23rd IEEE international conference on tools with artificial intelligence (ICTAI’11), pp 832–840

  • Bouguessa M, Wang S (2009) Mining projected clusters in high-dimensional spaces. IEEE Trans Knowl Data Eng 21(4):507–522

    Article  Google Scholar 

  • Bouguessa M, Wang S, Sun H (2006) An objective approach to cluster validation. Pattern Recognit Lett 27(13):1419–1430

    Article  Google Scholar 

  • Bouguila N, Ziou D, Monga E (2006) Practical Bayesian estimation of a finite beta mixture through Gibbs sampling and its applications. Stat Comput 16(2):215–225

    Article  MathSciNet  Google Scholar 

  • Cesario E, Manco G, Ortale R (2007) Top-down parameter-free clustering of high-dimensional categorical data. IEEE Trans Knowl Data Eng 19(12):1607–1624

    Article  Google Scholar 

  • Das K, Schneider J (2007) Detecting anomalous records in categorical datasets. In: Proceedings of the 13th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’07), pp 220–229

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc B 39(1):1–38

    MATH  MathSciNet  Google Scholar 

  • Domeniconi C, Gunopulos D, Ma S, Yan B, Al-Razgan M, Papadopoulos D (2007) Locally adaptive metrics for clustering high dimensional data. Data Min Knowl Discov 14(1):63–97

    Article  MathSciNet  Google Scholar 

  • Figueiredo MAT, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern Anal Mach Intell 24(3):381–396

    Article  Google Scholar 

  • Fisher DH (1987) Knowledge acquisition via incremental conceptual clustering. Mach Learn 2(2):139–172

    Google Scholar 

  • Gan G, Wu J (2004) Subspace clustering for high dimensional categorical data. ACM SIGKDD Explor Newsl 6(2):87–94

    Article  Google Scholar 

  • Ganti V, Gehrke J, Ramakrishnan R (1999) CACTUS: clustering categorical data using summaries. In: Proceedings of the 5th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’99), pp 73–83

  • Guha S, Rastogi R, Shim K (2000) ROCK: a robust clustering algorithm for categorical attributes. Inf Syst 25(5):345–366

    Article  Google Scholar 

  • He Z, Deng S, Xu X, Huang JZ (2006) A fast greedy algorithm for outlier mining. In: Proceedings of the 10th Pacific-Asia conference on advances in knowledge discovery and data mining (PAKDD’06), pp 567–576

  • Ji Y, Wu C, Liu P, Wang J, Coombes KR (2005) Applications of beta-mixture models in bioinformatics. Bioinformatics 21(9):2118–2122

    Article  Google Scholar 

  • Jing L, Ng MK, Huang JZ (2007) An entropy weighting k-means algorithm for subspace clustering of high-dimensional sparse data. IEEE Trans Knowl Data Eng 19(8):1026–1041

    Article  Google Scholar 

  • Keogh E, Lonardi S, Ratanamahatana CA (2004) Towards parameter-free data mining. In: Proceedings of the 10th ACM SIGKDD international conference on knowledge discovery and data mining (KDD’04), pp 206–215

  • Kim M, Ramakrishna RS (2006) Projected clustering for categorical datasets. Pattern Recognit Lett 27(12):1405–1417

    Article  Google Scholar 

  • Koufakou A, Georgiopoulos M (2010) A fast outlier detection strategy for distributed high-dimensional data sets with mixed attributes. Data Min Knowl Discov 20(2):259–289

    Article  MathSciNet  Google Scholar 

  • Koufakou A, Ortiz EG, Georgiopoulos M, Anagnostopoulos GC, Reynolds KM (2007) A scalable and efficient outlier detection strategy for categorical data. In: Proceedings of the 19th IEEE international conference on tools with artificial intelligence (ICTAI’07), pp 210–217

  • Kriegel HP, Kröger P, Zimek A (2009) Clustering high-dimensional data: a survey on subspace clustering, pattern-based clustering, and correlation clustering. ACM Trans Knowl Discov Data 3(1), art no 1

    Google Scholar 

  • Ma Z, Leijon A (2009) Beta mixture models and the application to image classification. In: Proceedings of the 16th IEEE international conference on image processing (ICIP’09), pp 2045–2048

  • Moise G, Sander J, Ester M (2008) Robust projected clustering. Knowl Inf Syst 14(3):273–298

    Article  MATH  Google Scholar 

  • Müller E, Günnemann S, Assent I, Seidl T (2009) Evaluating clustering in subspace projections of high dimensional data. Proc Very Large Databases Endow 2(1):1270–1281

    Google Scholar 

  • Otey ME, Ghoting A, Parthasarathy S (2006) Fast distributed outlier detection in mixed-attribute data sets. Data Min Knowl Discov 12(2–3):203–228

    Article  MathSciNet  Google Scholar 

  • Rodriguez-Baena DS, Perez-Pulido AJ, Aguilar-Ruiz JS (2011) A biclustering algorithm for extracting bit-patterns from binary datasets. Bioinformatics 27(19):2738–2745

    Article  Google Scholar 

  • Schwarz G (1978) Estimating the dimension of a model. Ann Stat 6(2):461–464

    Article  MATH  Google Scholar 

  • Smyth P (2000) Model selection for probabilistic clustering using cross-validated likelihood. Stat Comput 10(1):63–72

    Article  Google Scholar 

  • Wang K, Xu C, Liu B (1999) Clustering transactions using large items. In: Proceedings of the 8th ACM international conference on information and knowledge management (CIKM’99), pp 483–490

  • Xiong T, Wang S, Mayers A, Monga E (2012) DHCC: divisive hierarchical clustering of categorical data. Data Min Knowl Discov 24(1):103–135

    Article  MATH  MathSciNet  Google Scholar 

  • Yip KY, Cheung DW, Ng MK (2004) HARP: A practical projected clustering algorithm. IEEE Trans Knowl Data Eng 16(11):1387–1397

    Article  Google Scholar 

  • Yip AM, Ng MK, Wu EH, Chan TF (2007) Strategies for identifying statistically significant dense regions in microarray data. IEEE/ACM Trans Comput Biol Bioinform 4(3):415–429

    Article  Google Scholar 

  • Ypma TJ (1995) Historical development of the Newton–Raphson method. SIAM Rev 37(4):531–551

    Article  MATH  MathSciNet  Google Scholar 

  • Zaki MJ, Peters M, Assent I, Seidl T (2007) CLICKS: an effective algorithm for mining subspace clusters in categorical datasets. Data Knowl Eng 60(1):51–70

    Article  Google Scholar 

Download references

Acknowledgments

The author gratefully thank Dr. Guiseppe Manco for providing the implementation of AT-DC, Dr. Tengke Xiong for providing the implementation of DHCC and Dr. Andy M. Yip for providing the Primate and Aging Human Brain data sets. The author also would like to thank the reviewers for their valuable comments and important suggestions. This work is supported by Research Grants from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Bouguessa.

Additional information

Responsible editor: Sugato Basu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bouguessa, M. Clustering categorical data in projected spaces. Data Min Knowl Disc 29, 3–38 (2015). https://doi.org/10.1007/s10618-013-0336-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10618-013-0336-8

Keywords

Navigation