Skip to main content

Advertisement

Log in

Transfection of bovine fetal fibroblast with polyethylenimine (PEI) nanoparticles: effect of particle size and presence of fetal bovine serum on transgene delivery and cytotoxicity

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

The development of efficient transfection protocols for livestock cells is crucial for implementation of cell-based transgenic methods to produce genetically modified animals. We synthetized fully deacylated linear 22, 87 and 217 kDa polyethylenimine (PEI) nanoparticles and compared their transfection efficiency and cytotoxicity to commercial branched 25 kDa PEI and linear 58 kDa poly(allylamine) hydrochloride. We studied the effect of PEI size and presence of serum on transfection efficiency on primary cultures of bovine fetal fibroblasts and established cells lines (HEK 293 and Hep G2). We found that transfection efficiency was affected mainly by polymer/pDNA ratio and DNA concentration and in less extent by PEI MW. In bovine fibroblast, preincubation of PEI nanoparticles with fetal bovine serum (FBS) greatly increased percentage of cells expressing the transgene (up to 82%) while significantly decreased the polymer cytotoxic effect. 87 and 217 kDa PEI rendered the highest transfection rates in HEK 293 and Hep G2 cell lines (>50% transfected cells) with minimal cell toxicity. In conclusion, our results indicate that fully deacylated PEI of 87 and 217 kDa are useful DNA vehicles for non-viral transfection of primary cultures of bovine fetal fibroblast and HEK 293 and Hep G2 cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alessio AP, Fili AE, Garrels W, Forcato DO, Olmos Nicotra MF, Liaudat AC, Bevacqua RJ, Savy V, Hiriart MI, Talluri TR, Owens JB, Ivics Z, Salamone DF, Moisyadi S, Kues WA, Bosch P (2016) Establishment of cell-based transposon-mediated transgenesis in cattle. Theriogenology 85:e1292

    Article  Google Scholar 

  • Boussif O, Lezoualc’h F, Zanta MA, Mergny MD, Scherman D, Demeneix B, Behr JP (1995) A versatile vector for gene and oligonucleotide transfer into cells in culture and in vivo: polyethylenimine. Proc Natl Acad Sci USA 92:7297–7301

    Article  CAS  Google Scholar 

  • Carrabino S, Di Gioia S, Copreni E, Conese M (2005) Serum albumin enhances polyethylenimine-mediated gene delivery to human respiratory epithelial cells. J Gene Med 7:1555–1564

    Article  CAS  Google Scholar 

  • Chollet P, Favrot MC, Hurbin A, Coll JL (2002) Side-effects of a systemic injection of linear polyethylenimine-DNA complexes. J Gene Med 4:84–91

    Article  Google Scholar 

  • Di Gioia S, Conese M (2009) Polyethylenimine-mediated gene delivery to the lung and therapeutic applications. Drug Des Devel Ther 2:163–188

    Google Scholar 

  • Fan W, Wu X, Ding B, Gao J, Cai Z, Zhang W, Yin D, Wang X, Zhu Q, Liu J, Ding X, Gao S (2012) Degradable gene delivery systems based on Pluronics-modified low-molecular-weight polyethylenimine: preparation, characterization, intracellular trafficking, and cellular distribution. Int J Nanomed 7:1127–1138

    CAS  Google Scholar 

  • Fischer D, Bieber T, Li Y, Elsässer HP, Kissel T (1999) A novel non-viral vector for DNA delivery based on low molecular weight, branched polyethylenimine: effect of molecular weight on transfection efficiency and cytotoxicity. Pharm Res 16:1273–1279

    Article  CAS  Google Scholar 

  • Forcato DO, Olmos Nicotra MF, Ortega NM, Alessio AP, Fili AE, Rodríguez N, Bosch P (2012) Optimization of branched 25 kDa polyethylenimine for efficient gene delivery in bovine fetal fibroblasts. Reprod Fertil Dev 25:313

    Article  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (1999) Size matters: molecular weight affects the efficiency of poly(ethylenimine) as a gene delivery vehicle. J Biomed Mater Res 45:268–275

    Article  CAS  Google Scholar 

  • Godbey WT, Wu KK, Mikos AG (2001) Poly(ethylenimine)-mediated gene delivery affects endothelial cell function and viability. Biomaterials 22:471–480

    Article  CAS  Google Scholar 

  • Huh SH, Do HJ, Lim HY, Kim DK, Choi SJ, Song H, Kim NH, Park JK, Chang WK, Chung HM, Kim JH (2007) Optimization of 25 kDa linear polyethylenimine for efficient gene delivery. Biologicals 35:165–171

    Article  CAS  Google Scholar 

  • Hunter AC (2006) Molecular hurdles in polyfectin design and mechanistic background to polycation induced cytotoxicity. Adv Drug Deliv Rev 58:1523–1531

    Article  CAS  Google Scholar 

  • Jeong JH, Song SH, Lim DW, Lee H, Park TG (2001) DNA transfection using linear poly(ethylenimine) prepared by controlled acid hydrolysis of poly(2-ethyl-2-oxazoline). J Control Release 73:391–399

    Article  CAS  Google Scholar 

  • Jiang D, Salem AK (2012) Optimized dextran-polyethylenimine conjugates are efficient non-viral vectors with reduced cytotoxicity when used in serum containing environments. Int J Pharm 427:71–79

    Article  CAS  Google Scholar 

  • Kawakami S, Ito Y, Charoensit P, Yamashita F, Hashida M (2006) Evaluation of proinflammatory cytokine production induced by linear and branched polyethylenimine/plasmid DNA complexes in mice. J Pharmacol Exp Ther 317:1382–1390

    Article  CAS  Google Scholar 

  • Kichler A (2004) Gene transfer with modified polyethylenimines. J Gene Med 6:S3–S10

    Article  CAS  Google Scholar 

  • Lázaro-Martínez JM, Rodríguez-Castellón E, Vega D, Monti GA, Chattah AK (2015) Solid-state Studies of the crystalline/amorphous character in linear poly(ethylenimine hydrochloride) (PEI·HCl) polymers and their copper complexes. Macromolecules 48:1115–1125

    Article  Google Scholar 

  • Lee K, Bae KH, Lee Y, Lee SH, Ahn CH, Park TG (2010) Pluronic/polyethylenimine shell crosslinked nanocapsules with embedded magnetite nanocrystals for magnetically triggered delivery of siRNA. Macromol Biosci 10:239–245

    Article  CAS  Google Scholar 

  • Liang W, Lam JKW (2012) Endosomal escape pathways for non-viral nucleic acid delivery systems. In: Ceresa B (ed) Molecular regulation of endocytosis. InTech, Croatia, pp 421–467

    Google Scholar 

  • Lungwitz U, Breunig M, Blunk T, Göpferich A (2005) Polyethylenimine-based non-viral gene delivery systems. Eur J Pharm Biopharm 60:247–266

    Article  CAS  Google Scholar 

  • Mintzer MA, Simanek EE (2009) Nonviral vectors for gene delivery. Chem Rev 109:259–302

    Article  CAS  Google Scholar 

  • Moghimi SM, Symonds P, Murray JC, Hunter AC, Debska G, Szewczyk A (2005) A two-stage poly(ethylenimine)-mediated cytotoxicity: implications for gene transfer/therapy. Mol Ther 11:990–995

    Article  CAS  Google Scholar 

  • Neu M, Fischer D, Kissel T (2005) Recent advances in rational gene transfer vector design based on poly(ethylene imine) and its derivatives. J Gene Med 7:992–1009

    Article  CAS  Google Scholar 

  • Niemann H, Kues W, Carnwath JW (2009) Transgenic farm animals: current status and perspectives for agriculture and biomedicine. In: Engelhard M, Hagen K, Boysen M (eds) Genetic engineering in livestock. Springer, Berlin, pp 1–30

    Google Scholar 

  • Ogris M, Steinlein P, Kursa M, Mechtler K, Kircheis R, Wagner E (1998) The size of DNA/transferrin-PEI complexes is an important factor for gene expression in cultured cells. Gene Ther 5:1425–1433

    Article  CAS  Google Scholar 

  • Rhaese S, von Briesen H, Rübsamen-Waigmann H, Kreuter J, Langer K (2003) Human serum albumin-polyethylenimine nanoparticles for gene delivery. J Control Release 92:199–208

    Article  CAS  Google Scholar 

  • Sawant RR, Sriraman SK, Navarro G, Biswas S, Dalvi RA, Torchilin VP (2012) Polyethyleneimine-lipid conjugate-based pH-sensitive micellar carrier for gene delivery. Biomaterials 33:3942–3951

    Article  CAS  Google Scholar 

  • Swami A, Aggarwal A, Pathak A, Patnaik S, Kumar P, Singh Y, Gupta KC (2007) Imidazolyl-PEI modified nanoparticles for enhanced gene delivery. Int J Pharm 335:180–192

    Article  CAS  Google Scholar 

  • Thomas M, Ge Q, Lu JJ, Chen J, Klibanov AM (2005a) Cross-linked small polyethylenimines: while still nontoxic, deliver DNA efficiently to mammalian cells in vitro and in vivo. Pharm Res 22:373–380

    Article  CAS  Google Scholar 

  • Thomas M, Lu JJ, Ge Q, Zhang C, Chen J, Klibanov AM (2005b) Full deacylation of polyethylenimine dramatically boosts its gene delivery efficiency and specificity to mouse lung. Proc Natl Acad Sci USA 102:5679–5684

    Article  CAS  Google Scholar 

  • Tian H, Xiong W, Wei J, Wang Y, Chen X, Jing X, Zhu Q (2007) Gene transfection of hyperbranched PEI grafted by hydrophobic amino acid segment PBLG. Biomaterials 28:2899–2907

    Article  CAS  Google Scholar 

  • Tros de Ilarduya C, Sun Y, Düzgüneş N (2010) Gene delivery by lipoplexes and polyplexes. Eur J Pharm Sci 40:159–170

    Article  CAS  Google Scholar 

  • Yang Z, Sahay G, Sriadibhatla S, Kabanov AV (2008) Amphiphilic block copolymers enhance cellular uptake and nuclear entry of polyplex-delivered DNA. Bioconjug Chem 19:1987–1994

    Article  CAS  Google Scholar 

  • Zhao E, Zhao Z, Wang J, Yang C, Chen C, Gao L, Feng Q, Hou W, Gao M, Zhang Q (2012) Surface engineering of gold nanoparticles for in vitro siRNA delivery. Nanoscale 4:5102–5109

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) and Universidad Nacional de Río Cuarto (UNRC), República Argentina.

Funding

Funding was provided by CONICET (PIP 2012-2014 (114 201101 00278)), MinCyT (PICT-2012-0514).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Bosch.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interest to declare.

Additional information

D. O. Forcato and A. E. Fili have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Forcato, D.O., Fili, A.E., Alustiza, F.E. et al. Transfection of bovine fetal fibroblast with polyethylenimine (PEI) nanoparticles: effect of particle size and presence of fetal bovine serum on transgene delivery and cytotoxicity. Cytotechnology 69, 655–665 (2017). https://doi.org/10.1007/s10616-017-0075-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-017-0075-6

Keywords

Navigation