Skip to main content
Log in

Cochlear epithelial of dog fetuses: a new source of multipotent stem cells

  • Original Article
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Hearing loss caused by the damage of cochlea sensory cells or neurons is a common human disease, but also affects dogs and other animals. To test their progenitor nature as potential value for future therapies, we characterized cells derived from the cochlear epithelium in dog fetuses. In total, 8 fetuses of 35–40 days of gestation, derived from castration campaigns, were investigated. Cells were analysed by the MTT colorimetric assay and in regard to cell cycle, differentiation capacities, immunophenotypes and qPCR analysis. In culture, cells had a fibroblast-like morphology. Phenotypic immunocharacterization showed positive staining for mesenchymal stem cell and pluripotency markers and were negative for hematopoietic cell markers. Cells possessed differentiation capacity for the three main cell lineages: osteogenic, adipogenic and chondrogenic, altogether indicating their nature as mesenchymal stem cells. Thus, cells derived from fetal cochlear tissues indeed may provide valuable sources of progenitor cells for cell therapy of canine deafness and other diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbas AK, Lichtman AH, Pillai SHIV (2012) Imunologia celular e molecular, 7th edn. Elsevier, Rio de Janeiro

  • Alcantara D (2010) Obtenção e caracterização de linhagens celular primaria de osteossarcoma canino. 2010. 97 f. Dissertação (Mestrado em Ciências)—Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo

  • Ambrosio CE, Zucconi E, Martins D, Vanucchi C, Perez M, Vieira N, Valadares M, Jazedje T, Miglino MA, Zatz M (2007) Extreme clinical variability in GRMD: from neonatal death to asymptomatic carriers. Neuromuscul Disord 17:776. doi:10.1016/j.nmd.2007.06.056

    Article  Google Scholar 

  • America (2016) Deafness and hearing loss. Fact sheet. Nº 300. United States: World Health Organization 20

  • Banerjee A, Jensen-Smith H, Lazzell A, Prasad V, Elguezabal G, Hallworth R, Ludueña RF (2008) Localization of betav tubulin in the cochlea and cultured cells with a novel monoclonal antibody. Cell Motil Cytoskelet 65:505–514. doi:10.1002/cm.20280

    Article  CAS  Google Scholar 

  • Barboza LC Jr, Oiticica J, Batissoco AC (2008) Perspectives in the treatment of haring loss with stem cells. Int Arch Otorhinolaryngol 12:111–115

    Google Scholar 

  • Bouchard M, Caprona D, Busslinger M, Xu P, Fritzsch B (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. Dev Biol 10:89. doi:10.1186/1471-213X-10-89

    Google Scholar 

  • Cardoso MT (2015) Comparação molecular entre células-tronco mesenquimais de membrana amniótica de cão e de gato.66f. Tese (Doutora em Ciências)—Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo

  • Chao TT, Wang CH, Chen HC, Shih CP, Sytwu HK, Huang KL, Chen SY (2013) Adherent culture conditions enrich the side population obtained from the cochlear modiolus-derived stem/progenitor cells. Int J Pediatr Otorhinolaryngol 77:779–784. doi:10.1016/j.ijporl.2013.02.010

    Article  Google Scholar 

  • Corrales CE, Pan L, Li H, Liberman MC, Heller S, Edge ASB (2006) Engraftment and differentiation of embryonic stem cell-derived neural progenitor cells in the cochlear nerve trunk: growth of processes into the organ of Corti. J Neurobiol 66:1489–1500. doi:10.1002/neu.20310

    Article  Google Scholar 

  • Cunha FM, Coutinho SD, Matera A, Fiorio WAB, Ramos MCC, Silveira LMG (2003) Avaliação clínica e citológica do conduto auditivo externo de cães com otite. Rev Educ Cont Vet Med Zootec 6:1–3

    Google Scholar 

  • Dabdoub A, Puligilla C, Jones JM, Fritzsch B, Cheah KSE, Pevny LH, Kelley MW (2008) Sox2 signaling in prosensory domain specification and subsequent hair cell differentiation in the developing cochlea. Proc Natl Acad Sci USA 105:18396–18401. doi:10.1073/pnas.0808175105

    Article  CAS  Google Scholar 

  • Diensthuber M, Oshima K, Heller S (2009) Stem/progenitor cells derived from the cochlear sensory epithelium give rise to spheres with distinct morphologies and features. J Assoc Res Otolaryngol 10:173–190. doi:10.1007/s10162-009-0161-3

    Article  Google Scholar 

  • Doetzlhofer A, White PM, Johnson E, Segil N, Groves AK (2004) In vitro growth and differentiation of mammalian sensory hair cell progenitors: a requirement for EGF and periotic mesenchyme. Dev Biol 272:432–447. doi:10.1016/j.ydbio.2004.05.013

    Article  CAS  Google Scholar 

  • Dominici M, Le Blanc K, Mueller I, Slaper-Cortenbach I, Marini F, Krause D, Deans R, Keating A, Prockop D, Horwitz E (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317. doi:10.1080/14653240600855905

    Article  CAS  Google Scholar 

  • Evans HE, Sack WO (1973) Prenatal development of domestic and laboratory mammals: growth curves, external features and selected references. Anat Histol Embryol 2:11–45. doi:10.1111/j.1439-0264.1973.tb00253.x

    Article  CAS  Google Scholar 

  • Favaron PO, Mess A, Will SE, Maiorka PC, Oliveira MF, Miglino MA (2014) Yolk sac mesenchymal progenitor cells from New World mice (Necromys lasiurus) with multipotent differential potential. PLoS ONE 9:e95575. doi:10.1371/journal.pone.0095575

    Article  Google Scholar 

  • Fratini P, Carreira ACO, Alcântara D, de Oliveira E Silva FM, Rodrigues MN, Miglino MA (2016) Endothelial differentiation of canine yolk sac cells transduced with VEGF. Res Vet Sci 104:71–76. doi:10.1016/j.rvsc.2015.11.010

  • Gotthelf LN (2007) Doenças do ouvido em pequenos animais. São Paulo, Roca, p 368

    Google Scholar 

  • Guyton AC, Hall JE (2011) Tratado de fisiologia médica, 12th edn. Elsevier, Rio de Janeiro, p 1128

    Google Scholar 

  • Horn PA, Morris JC, Neff T, Kiem HP (2004) Stem cell gene transfer–efficacy and safety in large animal studies. Mol Ther 10:417–431. doi:10.1016/j.ymthe.2004.05.017

    Article  CAS  Google Scholar 

  • Hutchin TP, Cortopassi GA (2000) Mitochondrial defects and hearing loss. Cell Mol Life Sci 57:1927–1937

    Article  CAS  Google Scholar 

  • Li H, Liu H, Heller S (2003) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9:1293–1299. doi:10.1038/nm925

    Article  CAS  Google Scholar 

  • Lima SAF, Wodewotzky TI, Lima-Neto JF, Beltrão-Braga PCB, Alvarenga FCL (2012) Diferenciação in vitro de células-tronco mesenquimais da medula óssea de cães em precursores osteogênicos. Pesqui Vet Bras 32:463–469. doi:10.1590/S0100-736X2012000500016

    Article  Google Scholar 

  • Lou X, Zhang Y, Yuan C (2007) Multipotent stem cells from the young rat inner ear. Neurosci Lett 416:28–33. doi:10.1016/j.neulet.2006.12.061

    Article  CAS  Google Scholar 

  • Lou X, Dong Y, Xie J, Wang X, Yang L, Tokuda M, Zhang Y (2014) Comparing the cultivated cochlear cells derived from neonatal and adult mouse. J Transl Med 29:150. doi:10.1186/1479-5876-12-150

    Article  Google Scholar 

  • Malgrange B, Belachew S, Thiry M, Nguyen L, Rogister B, Alvarez ML, Rigo JM, Vande Water TR, Moonen G, Lefebvre PP (2002) Proliferative generation of mammalian auditory hair cells in culture. Mech Dev 112:79–88

    Article  CAS  Google Scholar 

  • Martinez-Monedero R, Edge A (2007) Stem cells for the replacement of inner ear neurons and hair cells. Int J Dev Biol 51:655–661. doi:10.1016/j.neulet.2006.12.061

    Article  CAS  Google Scholar 

  • Müller E, Heusinger A (1994) Microbiological results of ear swabs from dogs and cats. Tierarztl Prax 22:80–84

    Google Scholar 

  • Oliveira JAA, Canedo MC, Rossato M (2002) Otoproteção das células ciliadas auditivas contra a ototoxicidade da amicacina. Rev. Bras. Otorrinolaringol 68:7–13. doi:10.1590/S0034-72992002000100002

    Article  Google Scholar 

  • Oshima K, Grimm CM, Corrales CE, Senn P, Martinez Monedero R, Géléoc GSG, Edge A, Holt JR, Heller S (2007) Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc Res Otolaryngol 8:18–31

    Article  Google Scholar 

  • Parker MA, Corliss DA, Gray B, Anderson JK, Bobbin RP, Snyder EY, Cotanche DA (2007) Neural stem cells injected into the sound-damaged cochlea migrate throughout the cochlea and express markers of hair cells, supporting cells, and spiral ganglion cells. Hear Res 232:29–43. doi:10.1016/j.heares.2007.06.007

    Article  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45. doi:10.1093/nar/29.9.e45

  • Piatto VB, Nascimento ECT, Alexandrino F, Oliveira CA, Lopes ACP, Sartorato EL, Maniglia JV (2005) Genética molecular da deficiência auditiva não-sindrômica. Rev Bras Otorrinolaringol 71:216–223. doi:10.1590/S0034-72992005000200016

    Article  Google Scholar 

  • Picciotti PM, Fetoni AR, Paludetti G, Wolf FI, Torsello A, Troiani D, Ferraresi A, Pola R, Sergi B (2006) Vascular endothelial growth factor (VEGF) expression in noise-induced hearing loss. Hear Res 214:76–83. doi:10.1016/j.heares.2006.02.004

    Article  CAS  Google Scholar 

  • Savary E, Hugnot JP, Chassigneux Y, Travo C, Duperray C, Van de Water T, Zine A (2007) Distinct population of hair cell progenitors can be isolated from the postnatal mouse cochlea using side population analysis. Stem Cells 25:332–339. doi:10.1634/stemcells.2006-0303

    Article  CAS  Google Scholar 

  • Shi Y, Kirwan P, Livesey FJ (2012) Directed differentiation of human pluripotent stem cells to cerebral cortex neurons and neural networks. Nat Protoc 7:1836–1846. doi:10.1038/nprot.2012.116

    Article  CAS  Google Scholar 

  • Tolosa EMC, Rodrigues CJ, Behmer AO, Neto AGF (2003) Manual de Técnicas para Histologia Normal e Patológica, 2nd edn. Editora Manole, Barueri, pp 19–57

    Google Scholar 

  • Wenceslau CV, Miglino MA, Martins DS, Ambrósio CE, Lizier NF, Pignatari GC, Kerkis I (2012) Mesenchymal progenitor cells from canine fetal tissues: yolk sac, liver, and bone marrow. Tissue Eng A 17:2165–2176. doi:10.1089/ten.TEA.2010.0678

    Article  Google Scholar 

  • White PM, Doetzlhofer A, Lee YS, Groves AK, Segil N (2006) Mammalian cochlear supporting cells can divide and trans-differentiate into hair cells. Nature 441:984–987. doi:10.1038/nature04849

    Article  CAS  Google Scholar 

  • White PM, Stone JS, Groves AK, Segil N (2012) EGFR signaling is required for regenerative proliferation in the cochlea: conservation in birds and mammals. Dev Biol 363:191–200. doi:10.1016/j.ydbio.2011.12.035

    Article  CAS  Google Scholar 

  • Xie F, Xiao P, Chen D, Xu L, Zhang B (2012) MiRDeepFinder: a miRNA analysis tool for deep sequencing of plant small RNAs. Plant Mol Biol 80:75–84. doi:10.1007/s11103-012-9885-2

  • Yerukhimovich MV, Bai L, Chen DHC, Miller RH, Alagramam KN (2007) Identification and characterization of mouse cochlear stem cells. Dev Neurosci 29:251–260. doi:10.1159/000096415

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jéssica Borghesi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, A.C.M., Borghesi, J., Mario, L.C. et al. Cochlear epithelial of dog fetuses: a new source of multipotent stem cells. Cytotechnology 69, 179–189 (2017). https://doi.org/10.1007/s10616-016-0049-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-0049-0

Keywords

Navigation