Skip to main content

Advertisement

Log in

Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Chinese hamster ovary (CHO) cell lines are widely used for therapeutic protein production. When a transgene is integrated into the genome of a CHO cell, the expression level is highly dependent on the site of integration because of positional effects such as gene silencing. To overcome negative positional effects and establish stable CHO cell lines with high productivity, several regulatory DNA elements are used in vector construction. Previously, we established the CHO DR1000L-4N cell line, a stable and high copy number Dhfr gene-amplified cell line. It was hypothesized that the chromosomal location of the exogenous gene-amplified region in the CHO DR1000L-4N genome contains regulatory motifs for stable protein production. Therefore, we isolated DNA regulatory motifs from the CHO DR1000L-4N cell line and determined whether these motifs act as an insulator. Our results suggest that stable expression of a transgene can be promoted by the CHO genome sequence, and it would be a powerful tool for therapeutic protein manufacturing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bao L, Zhou M, Cui Y (2008) CTCFBSDB: a CTCF-binding site database for characterization of vertebrate genomic insulators. Nucleic Acids Res 36:D83–D87. doi:10.1093/nar/gkm875

    Article  CAS  Google Scholar 

  • Bell AC, West AG, Felsenfeld G (2001) Insulators and boundaries: versatile regulatory elements in the eukaryotic genome. Science 291:447–450. doi:10.1126/science.291.5503.447

    Article  CAS  Google Scholar 

  • Blasco MA (2007) The epigenetic regulation of mammalian telomeres. Nat Rev Genet 8:299–309. doi:10.1038/nrg2047

    Article  CAS  Google Scholar 

  • Ewing B, Green P (1998) Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res 8:186–194. doi:10.1101/gr.8.3.186

    Article  CAS  Google Scholar 

  • Ewing B, Hillier L, Wendl MC, Green P (1998) Base-calling of automated sequencer traces using phred. I. Accuracy assessment. Genome Res 8:175–185. doi:10.1101/gr.8.3.175

    Article  CAS  Google Scholar 

  • Gonzalo S, Jaco I, Fraga MF, Chen T, Li E, Esteller M, Blasco MA (2006) DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat Cell Biol 8:416–424. doi:10.1038/ncb1386

    Article  CAS  Google Scholar 

  • Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202. doi:10.1101/gr.8.3.195

    Article  CAS  Google Scholar 

  • Herold M, Bartkuhn M, Renkawitz R (2012) CTCF: insights into insulator function during development. Development 139:1045–1057. doi:10.1242/dev.065268

    Article  CAS  Google Scholar 

  • Izumi M, Gilbert DM (1999) Homogeneous tetracycline-regulatable gene expression in mammalian fibroblasts. J Cell Biochem 76:280–289

    Article  CAS  Google Scholar 

  • Kang SY, Kim YG, Kang S, Lee HW, Lee EG (2016) A novel regulatory element (E77) isolated from CHO-K1 genomic DNA enhances stable gene expression in Chinese hamster ovary cells. Biotechnol J 11:633–641. doi:10.1002/biot.201500464

    Article  Google Scholar 

  • Kim HY (2007) Use of DNA insulator elements and scaffold/matirix-attached regions for enhanced recombinant protein expression. In: Butler M (ed) Cell culture and upstream processing. Taylor & Francis, New York, pp 19–36

    Google Scholar 

  • Kim JM, Kim JS, Park DH, Kang HS, Yoon J, Baek K, Yoon Y (2004) Improved recombinant gene expression in CHO cells using matrix attachment regions. J Biotechnol 107:95–105. doi:10.1016/j.jbiotec.2003.09.015

    Article  CAS  Google Scholar 

  • Kim TH, Abdullaev ZK, Smith AD, Ching KA, Loukinov DI, Green RD, Zhang MQ, Lobanenkov VV, Ren B (2007) Analysis of the vertebrate insulator protein CTCF-binding sites in the human genome. Cell 128:1231–1245. doi:10.1016/j.cell.2006.12.048

    Article  CAS  Google Scholar 

  • Kim M, O’Callaghan PM, Droms KA, James DC (2011) A mechanistic understanding of production instability in CHO cell lines expressing recombinant monoclonal antibodies. Biotechnol Bioeng 108:2434–2446. doi:10.1002/bit.23189

    Article  CAS  Google Scholar 

  • Koo TY, Park JH, Park HH, Park TH (2009) Beneficial effect of 30Kc6 gene expression on production of recombinant interferon-β in serum-free suspension culture of CHO cells. Process Biochem 44:146–153. doi:10.1016/j.procbio.2008.09.018

    Article  CAS  Google Scholar 

  • Kwaks TH, Otte AP (2006) Employing epigenetics to augment the expression of therapeutic proteins in mammalian cells. Trends Biotechnol 24:137–142. doi:10.1016/j.tibtech.2006.01.007

    Article  CAS  Google Scholar 

  • Li J, Sun X, Zhang Y (2005) Improvement of hepatitis B surface antigen expression by dimethyl sulfoxide in the culture of recombinant Chinese hamster ovary cells. Process Biochem 41:317–322. doi:10.1016/j.procbio.2005.08.017

    Article  Google Scholar 

  • Majocchi S, Aritonovska E, Mermod N (2014) Epigenetic regulatory elements associate with specific histone modifications to prevent silencing of telomeric genes. Nucleic Acids Res 42:193–204. doi:10.1093/nar/gkt880

    Article  CAS  Google Scholar 

  • Maksimenko O, Gasanov NB, Georgiev P (2015) Regulatory elements in vectors for efficient generation of cell lines producing target proteins. Acta Naturae 7:15–26

    CAS  Google Scholar 

  • Moon H, Filippova G, Loukinov D, Pugacheva E, Chen Q, Smith ST, Munhall A, Grewe B, Bartkuhn M, Arnold R, Burke LJ, Renkawitz-Pohl R, Ohlsson R, Zhou J, Renkawitz R, Lobanenkov V (2005) CTCF is conserved from Drosophila to humans and confers enhancer blocking of the Fab-8 insulator. EMBO Rep 6:165–170. doi:10.1038/sj.embor.7400334

    Article  CAS  Google Scholar 

  • Omasa T (2002) Gene amplification and its application in cell and tissue engineering. J Biosci Bioeng 94:600–605. doi:10.1016/S1389-1723(02)80201-8

    Article  CAS  Google Scholar 

  • Omasa T, Takami T, Ohya T, Kiyama E, Hayashi T, Nishii H, Miki H, Kobayashi K, Honda K, Ohtake H (2008) Overexpression of GADD34 enhances production of recombinant human antithrombin III in Chinese hamster ovary cells. J Biosci Bioeng 106:568–573. doi:10.1263/Jbb.106.568

    Article  CAS  Google Scholar 

  • Omasa T, Cao Y, Park JY, Takagi Y, Kimura S, Yano H, Honda K, Asakawa S, Shimizu N, Ohtake H (2009) Bacterial artificial chromosome library for genome-wide analysis of Chinese hamster ovary cells. Biotechnol Bioeng 104:986–994. doi:10.1002/bit.22463

    Article  CAS  Google Scholar 

  • Ono K, Kamihira M, Kuga Y, Matsumoto H, Hotta A, Itoh T, Nishijima K, Nakamura N, Matsuda H, Iijima S (2003) Production of anti-prion scFv-Fc fusion proteins by recombinant animal cells. J Biosci Bioeng 95:231–238. doi:10.1016/S1389-1723(03)80022-1

    Article  CAS  Google Scholar 

  • Palazzoli F, Bire S, Bigot Y, Bonnin-Rouleux F (2011) Landscape of chromatin control element patents: positioning effects in pharmaceutical bioproduction. Nat Biotechnol 29:593–597. doi:10.1038/nbt.1907

    Article  CAS  Google Scholar 

  • Park JY, Takagi Y, Yamatani M, Honda K, Asakawa S, Shimizu N, Omasa T, Ohtake H (2010) Identification and analysis of specific chromosomal region adjacent to exogenous Dhfr-amplified region in Chinese hamster ovary cell genome. J Biosci Bioeng 109:504–511. doi:10.1016/j.jbiosc.2009.10.019

    Article  CAS  Google Scholar 

  • Perrod S, Gasser SM (2003) Long-range silencing and position effects at telomeres and centromeres: parallels and differences. Cell Mol Life Sci 60:2303–2318. doi:10.1007/s00018-003-3246-x

    Article  CAS  Google Scholar 

  • Pikaart MJ, Recillas-Targa F, Felsenfeld G (1998) Loss of transcriptional activity of a transgene is accompanied by DNA methylation and histone deacetylation and is prevented by insulators. Genes Dev 12:2852–2862. doi:10.1101/gad.12.18.2852

    Article  CAS  Google Scholar 

  • Reichert JM (2015) Antibodies to watch in 2015. MAbs 7:1–8. doi:10.4161/19420862.2015.988944

    Article  CAS  Google Scholar 

  • Rincon-Arano H, Furlan-Magaril M, Recillas-Targa F (2007) Protection against telomeric position effects by the chicken cHS4 beta-globin insulator. Proc Natl Acad Sci USA 104:14044–14049. doi:10.1073/pnas.0704999104

    Article  CAS  Google Scholar 

  • Saunders F, Sweeney B, Antoniou MN, Stephens P, Cain K (2015) Chromatin function modifying elements in an industrial antibody production platform–comparison of UCOE, MAR, STAR and cHS4 elements. PLoS ONE 10:e0120096. doi:10.1371/journal.pone.0120096

    Article  Google Scholar 

  • Scott KC, Merrett SL, Willard HF (2006) A heterochromatin barrier partitions the fission yeast centromere into discrete chromatin domains. Curr Biol 16:119–129. doi:10.1016/j.cub.2005.11.065

    Article  CAS  Google Scholar 

  • Wakimoto BT (1998) Beyond the nucleosome: epigenetic aspects of position-effect variegation in Drosophila. Cell 93:321–324. doi:10.1016/S0092-8674(00)81159-9

    Article  CAS  Google Scholar 

  • West AG, Gaszner M, Felsenfeld G (2002) Insulators: many functions, many mechanisms. Genes Dev 16:271–288. doi:10.1101/gad.954702

    Article  Google Scholar 

  • Xie X, Mikkelsen TS, Gnirke A, Lindblad-Toh K, Kellis M, Lander ES (2007) Systematic discovery of regulatory motifs in conserved regions of the human genome, including thousands of CTCF insulator sites. Proc Natl Acad Sci USA 104:7145–7150. doi:10.1073/pnas.0701811104

    Article  CAS  Google Scholar 

  • Yoshikawa T, Nakanishi F, Itami S, Kameoka D, Omasa T, Katakura Y, Kishimoto M, Suga K (2000a) Evaluation of stable and highly productive gene amplified CHO cell line based on the location of amplified genes. Cytotechnology 33:37–46. doi:10.1023/A:1008111328771

    Article  CAS  Google Scholar 

  • Yoshikawa T, Nakanishi F, Ogura Y, Oi D, Omasa T, Katakura Y, Kishimoto M, Suga K (2000b) Amplified gene location in chromosomal DNA affected recombinant protein production and stability of amplified genes. Biotechnol Prog 16:710–715. doi:10.1021/bp000114e

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was partly patented as Japan patent 4568378 and partly supported by a Grant-in-Aid for Scientific Research from the Japan Society for the Promotion of Science. Authors also appreciate to Mr. Shuichi Kimura for detail discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Omasa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Takagi, Y., Yamazaki, T., Masuda, K. et al. Identification of regulatory motifs in the CHO genome for stable monoclonal antibody production. Cytotechnology 69, 451–460 (2017). https://doi.org/10.1007/s10616-016-0017-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-016-0017-8

Keywords

Navigation