Skip to main content
Log in

Cytotoxicity, genotoxicity and mechanism of action (via gene expression analysis) of the indole alkaloid aspidospermine (antiparasitic) extracted from Aspidosperma polyneuron in HepG2 cells

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Aspidospermine is an indole alkaloid with biological properties associated with combating parasites included in the genera Plasmodium, Leishmania and Trypanossoma. The present study evaluated the cytotoxicity (resazurin test), genotoxicity (comet assay) and mechanism of action (gene expression analysis via qRT-PCR) of this alkaloid in human HepG2 cells. The results demonstrated that treatment with aspidospermine was both cytotoxic (starting at 75 μM) and genotoxic (starting at 50 μM). There was no significant modulation of the expression of the following genes: GSTP1 and GPX1 (xenobiotic metabolism); CAT (oxidative stress); TP53 and CCNA2 (cell cycle); HSPA5, ERN1, EIF2AK3 and TRAF2 (endoplasmic reticulum stress); CASP8, CASP9, CASP3, CASP7, BCL-2, BCL-XL BAX and BAX (apoptosis); and PCBP4, ERCC4, OGG1, RAD21 and MLH1 (DNA repair). At a concentration of 50 μM (non-cytotoxic, but genotoxic), there was a significant increase in the expression of CYP1A1 (xenobiotic metabolism) and APC (cell cycle), and at a concentration of 100 μM, a significant increase in the expression of CYP1A1 (xenobiotic metabolism), GADD153 (endoplasmic reticulum stress) and SOD (oxidative stress) was detected, with repression of the expression of GR (xenobiotic metabolism and oxidative stress). The results of treatment with aspidospermine at a 100 μM concentration (the dose indicated in the literature to achieve 89 % reduction of the growth of L. amazonensis) suggest that increased oxidative stress and an unfolded protein response (UPR) occurred in HepG2 cells. For the therapeutic use of aspidospermine (antiparasitic), chemical alteration of the molecule to achieve a lower cytotoxicity/genotoxicity in host cells is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen JRF, Holmstedt BR (1980) The simple β-carboline alkaloids. Phytochemistry 19:1573–1582

    Article  CAS  Google Scholar 

  • Ansah C, Khan A, Gooderham NJ (2005) In vitro genotoxicity of the West African anti-malarial herbal Cryptolepis sanguinolenta and its major alkaloid cryptolepine. Toxicology 208:141–147. doi:10.1016/j.tox.2004.11.026

    Article  CAS  Google Scholar 

  • de Barros IBD, Daniel JFDS, Pinto JP, Rezende MI, Filho RB, Ferreira DT (2011) Phytochemical and antifungal activity of anthraquinones and root and leaf extracts of Coccoloba mollis on phytopathogens. Braz Arch Biol Technol 54:535–541

  • Cortes DF, Sha W, Hower V, Blekherman G, Laubenbacher R, Akman S, Torti SV, Shulaev V (2011) Differential gene expression in normal and transformed human mammary epithelial cells in response to oxidative stress. Free Radic Biol Med 50:1565–1574. doi:10.1016/j.freeradbiomed.2011.03.002

    Article  CAS  Google Scholar 

  • Efferth T, Fu Y-J, Zu Y-G, Schwarz G, Konkimalla VSB, Michael W (2007) Molecular target-guided tumor therapy with natural products derived from traditional Chinese medicine. Curr Med Chem 14:2024–2032. doi:10.2174/092986707781368441

    Article  CAS  Google Scholar 

  • Fairlamb AH, Cerami A (1992) Metabolism and functions of trypanothione in the Kinetoplastida. Annu Rev Microbiol 46:695–729. doi:10.1146/annurev.micro.46.1.695

    Article  CAS  Google Scholar 

  • Ferreira ICP, Lonardoni MVC, Machado GMC, Leon LL, Filho LG, Pinto LHB, de Oliveira AJB (2004) Anti-leishmanial activity of alkaloidal extract from Aspidosperma ramiflorum. Mem Inst Oswaldo Cruz 99:325–327

    Article  CAS  Google Scholar 

  • Frederick M, Hayette MP, Tits M, De Mol P, Angenot L (1999) In vitro activities of Strychnos alkaloids and extracts against Plasmodium falciparum. Antimicrob Agents Chemother 43:2328–2331

    Google Scholar 

  • Galarreta BC, Sifuentes R, Carrillo AK, Sanchez L, Amado MRI, Maruenda H (2008) The use of natural product scaffolds as leads in the search for trypanothione reductase inhibitors. Bioorganic Med Chem 16:6689–6695. doi:10.1016/j.bmc.2008.05.074

    Article  CAS  Google Scholar 

  • Kingston DGI, Gerhart BB, Ionescu F, Mangino MM, Sami SM (1978) Plant anticancer agents. V: new bisindole alkaloids from Tabernaemontana johnstonii stem bark. J Pharm Sci 67:249–251. doi:10.1002/jps.2600670232

    Article  CAS  Google Scholar 

  • Li A, Shen G, Jiao S, Li H, Wang Q (2012) Metabolic detoxification of bakuchiol is mediated by cytochrome P450 enzymes in human liver microsomes. Beijing Da Xue Xue Bao 44:431–436

    CAS  Google Scholar 

  • McMillian MK, Li L, Parker JB, Patel L, Zhong Z, Gunnett JW, Powers WJ, Johnson MD (2002) An improved resazurin-based cytotoxicity assay for hepatic cells. Cell Biol Toxicol 18:157–173. doi:10.1023/A:1015559603643

    Article  CAS  Google Scholar 

  • Mei N, Heflich RH, Chou MW, Chen T (2004) Mutations induced by the carcinogenic pyrrolizidine alkaloid riddelliine in the liver cII gene of transgenic big blue rats. Chem Res Toxicol 17:814–818. doi:10.1021/tx049955b

    Article  CAS  Google Scholar 

  • Mei N, Guo L, Fu PP, Heflich RH, Chen T (2005) Mutagenicity of comfrey (Symphytum Officinale) in rat liver. Br J Cancer 92:873–875. doi:10.1038/sj.bjc.6602420

    Article  CAS  Google Scholar 

  • Melo PS, De Medeiros Cavalcante HM, Barbosa-Filho JM, Diniz MFFM, Medeiros IA, Haun M (2003) Warifteine and milonine, alkaloids isolated from Cissampelos sympodialis Eichl: cytotoxicity on rat hepatocyte culture and in V79 cells. Toxicol Lett 142:143–151. doi:10.1016/S0378-4274(03)00064-X

    Article  CAS  Google Scholar 

  • Mitaine-Offer AC, Sauvain M, Valentin A, Callapa J, Mallie MZ, Zèches-Hanrot M (2002) Antiplasmodial activity of aspidosperma indole alkaloids. Phytomedicine 9:142–145. doi:10.1078/0944-7113-00094

    Article  CAS  Google Scholar 

  • Pereira MM, Jácome RL, Alcântara AFCDC, Alves RB, Raslan DS (2007) Indole alkaloids from species of the Aspidosperma (Apocynaceae) genus. Quim Nova 30:970–983

    Article  CAS  Google Scholar 

  • Pfaffl MW, Horgan GW, Dempfle L (2002) Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res e30:e36. doi:10.1093/nar/30.9.e36

    Article  Google Scholar 

  • Samuelsson G (1992) Drugs of Natural Origin: a textbook of pharmacognosy. Swedish Pharmaceutical Press, Stockholm

    Google Scholar 

  • Simões CMO, Schenkel EP, Gosmann G, Mello JCP de, Mentz LA, Petrovick PR (2002) Farmacognosia: da planta ao medicamento, 5th edn. Porto Alegre/Florianópolis: Editora da UFRGS/Editora da UFSC

  • Takimoto CH, Calvo E (2008) Principles of oncologic pharmacotherapy. In: Pazdur R, Wagman LD, Camphausen KA, Hoskins WJ (eds) Cancer management: a multidisciplinary approach, 11th edn

  • Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF (2000) Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 35(3):206–221

  • Ulukan H, Swaan PW (2002) Camptothecins: a review of their chemotherapeutic potential. Drugs 62:2039–2057. doi:10.2165/00003495-200262140-00004

    Article  CAS  Google Scholar 

  • Wakamatsu TH, Dogru M, Tsubota K (2008) Tearful relations: oxidative stress, inflammation and eye diseases. Arq Bras Oftalmol 71:72–79. doi:10.1590/S0004-27492008000700015

    Article  Google Scholar 

  • Wang CK, Peng CH (1996) The mutagenicities of alkaloids and N-nitrosoguvacoline from betel quid. Mutat Res—Environ Mutagen Relat Subj 360:165–171. doi:10.1016/S0165-1161(96)90013-8

    CAS  Google Scholar 

  • Weniger B, Robledo S, Arango GJ, Deharo E , Aragón R, Muñoz V, Callapa J, Lobstein A, Anton R (2001) Antiprotozoal activities of Colombian plants. J Ethnopharmacol 78:193–200. doi:10.1016/S0378-8741(01)00346-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuliana Castello Coatti.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Coatti, G.C., Marcarini, J.C., Sartori, D. et al. Cytotoxicity, genotoxicity and mechanism of action (via gene expression analysis) of the indole alkaloid aspidospermine (antiparasitic) extracted from Aspidosperma polyneuron in HepG2 cells. Cytotechnology 68, 1161–1170 (2016). https://doi.org/10.1007/s10616-015-9874-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-015-9874-9

Keywords

Navigation