Skip to main content
Log in

Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging

  • Original Research
  • Published:
Cytotechnology Aims and scope Submit manuscript

Abstract

Wild chrysanthemum (Chrysanthemum indicum L.) is traditionally used in folk medicine as an anti-inflammatory agent. It is also used in the southwest plateau region of China to prevent ultraviolet-induced skin damage. However, the role and mechanism by which wild chrysanthemum prevents UV-induced skin damage and photoaging have never been investigated in vitro. In the present study, we found that aqueous extracts from wild chrysanthemum strongly reduced high-dose UVB-induced acute cell death of human immortalized keratinocytic HaCat cells. Wild chrysanthemum extract was also demonstrated to reduce low-dose UVB-induced expression of the photoaging-related matrix metalloproteinases MMP-2 and MMP-9. The ROS level elevated by UVB irradiation was strongly attenuated by wild chrysanthemum extract. Further study revealed that wild chrysanthemum extract reduced UVB-triggered ERK1/2 and p38 MAPK phosphorylation and their protective role, which is partially dependent on inhibiting p38 activation. These results suggest that wild chrysanthemum extract can protect the skin from UVB-induced acute skin damage and photoaging by reducing the intracellular reactive oxygen species (ROS) level and inhibiting p38 MAPK phosphorylation. The present study confirmed the protective role of wild chrysanthemum against UV-induced skin disorders in vitro and indicated the possible mechanism. Further study to identify the active components in wild chrysanthemum extract would be useful for developing new drugs for preventing and treating skin diseases, including skin cancer and photoaging, induced by UV irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Autier P (2009) Sunscreen abuse for intentional sun exposure. Br J Dermatol 161:40–45. doi:10.1111/j.1365-2133.2009.09448.x

    Article  Google Scholar 

  • Bayerl C, Taake S, Moll I, Jung EG (1995) Characterization of sunburn cells after exposure to ultraviolet light. Photodermatol Photoimmunol Photomed 11(4):149–154

  • Cagnol S, Chambard JC (2009) ERK and cell death: mechanisms of ERK-induced cell death–apoptosis, autophagy and senescence. FEBS J 277:2–21. doi:10.1111/j.1742-4658.2009.07366.x

    Article  Google Scholar 

  • Caricchio R, McPhie L, Cohen PL (2003) Ultraviolet B radiation-induced cell death: critical role of ultraviolet dose in inflammation and lupus autoantigen redistribution. J Immunol 171:5778–5786

    Article  CAS  Google Scholar 

  • Chen W, Bowden GT (1999) Activation of p38 MAP kinase and ERK are required for ultraviolet-B induced c-fos gene expression in human keratinocytes. Oncogene 18:7469–7476. doi:10.1038/sj.onc.1203210

    Article  CAS  Google Scholar 

  • Chen W, Tang Q, Gonzales MS, Bowden GT (2001) Role of p38 MAP kinases and ERK in mediating ultraviolet-B induced cyclooxygenase-2 gene expression in human keratinocytes. Oncogene 20:3921–3926. doi:10.1038/sj.onc.1204530

    Article  CAS  Google Scholar 

  • Cheon MS, Yoon T, do Lee Y, Choi G, Moon BC, Lee AY, Choo BK, Kim HK (2009) Chrysanthemum indicum Linne extract inhibits the inflammatory response by suppressing NF-kappaB and MAPKs activation in lipopolysaccharide-induced RAW 264.7 macrophages. J Ethnopharmacol 122:473–477. doi:10.1016/j.jep.2009.01.034

    Article  Google Scholar 

  • Deacon K, Mistry P, Chernoff J, Blank JL, Patel R (2003) p38 Mitogen-activated protein kinase mediates cell death and p21-activated kinase mediates cell survival during chemotherapeutic drug-induced mitotic arrest. Mol Biol Cell 14:2071–2087. doi:10.1091/mbc.E02-10-0653

    Article  CAS  Google Scholar 

  • Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P, Marks GC, Gaffney P, Battistutta D, Frost C, Lang C, Russell A (1999) Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet 354:723–729. doi:10.1016/S0140-6736(98)12168-2

    Article  CAS  Google Scholar 

  • Green AC, Williams GM, Logan V, Strutton GM (2011) Reduced melanoma after regular sunscreen use: randomized trial follow-up. J Clin Oncol 29:257–263. doi:10.1200/JCO.2010.28.7078

    Article  CAS  Google Scholar 

  • Gutierrez-Uzquiza A, Arechederra M, Bragado P, Aguirre-Ghiso JA, Porras A (2012) p38alpha mediates cell survival in response to oxidative stress via induction of antioxidant genes: effect on the p70S6 K pathway. J Biol Chem 287:2632–2642. doi:10.1074/jbc.M111.323709

    Article  CAS  Google Scholar 

  • He YY, Huang JL, Block ML, Hong JS, Chignell CF (2005) Role of phagocyte oxidase in UVA-induced oxidative stress and apoptosis in keratinocytes. J Invest Dermatol 125(3):560–566

  • Hildesheim J, Awwad RT, Fornace AJ Jr (2004) p38 Mitogen-activated protein kinase inhibitor protects the epidermis against the acute damaging effects of ultraviolet irradiation by blocking apoptosis and inflammatory responses. J Invest Dermatol 122:497–502. doi:10.1111/j.1523-1747.2004.22229.x

    Article  CAS  Google Scholar 

  • Ichihashi M, Ahmed NU, Budiyanto A, Wu A, Bito T, Ueda M, Osawa T (2000) Preventive effect of antioxidant on ultraviolet-induced skin cancer in mice. J Dermatol Sci 23:S45–S50

    Article  CAS  Google Scholar 

  • Ichihashi M, Ueda M, Budiyanto A, Bito T, Oka M, Fukunaga M, Tsuru K, Horikawa T (2003) UV-induced skin damage. Toxicology 189:21–39

    Article  CAS  Google Scholar 

  • Jeong SC, Kim SM, Jeong YT, Song CH (2013) Hepatoprotective effect of water extract from Chrysanthemum indicum L. flower. Chin Med 8:7. doi:10.1186/1749-8546-8-7

    Article  Google Scholar 

  • Jiang Q, Cao C, Lu S, Kivlin R, Wallin B, Chu W, Bi Z, Wang X, Wan Y (2009) MEK/ERK pathway mediates UVB-induced AQP1 downregulation and water permeability impairment in human retinal pigment epithelial cells. Int J Mol Med 23:771–777

    Article  CAS  Google Scholar 

  • Jinlian L, Yingbin Z, Chunbo W (2007) p38 MAPK in regulating cellular responses to ultraviolet radiation. J Biomed Sci 14:303–312. doi:10.1007/s11373-007-9148-4

    Article  Google Scholar 

  • Jou PC, Feldman RJ, Tomecki KJ (2012) UV protection and sunscreens: what to tell patients. Cleve Clin J Med 79:427–436. doi:10.3949/ccjm.79a.11110

    Article  Google Scholar 

  • Kim C, Ryu HC, Kim JH (2010) Low-dose UVB irradiation stimulates matrix metalloproteinase-1 expression via a BLT2-linked pathway in HaCaT cells. Exp Mol Med 42:833–841. doi:10.3858/emm.2010.42.12.086

    Article  CAS  Google Scholar 

  • Korac RR, Khambholja KM (2011) Potential of herbs in skin protection from ultraviolet radiation. Pharmacogn Rev 5:164–173. doi:10.4103/0973-7847.91114

    Article  Google Scholar 

  • Lee ER, Kang YJ, Kim JH, Lee HT, Cho SG (2005) Modulation of apoptosis in HaCaT keratinocytes via differential regulation of ERK signaling pathway by flavonoids. J Biol Chem 280:31498–31507. doi:10.1074/jbc.M505537200

    Article  CAS  Google Scholar 

  • Lee SJ, Cho SW, Kwon YY, Kwon HS, Shin WC (2012) Inhibitory effects of ethanol extracts from nuruk on oxidative stress, melanogenesis, and photo-aging. Mycobiology 40:117–123. doi:10.5941/MYCO.2012.40.2.117

    Article  Google Scholar 

  • Lin E, Cavanaugh JE, Leak RK, Perez RG, Zigmond MJ (2008) Rapid activation of ERK by 6-hydroxydopamine promotes survival of dopaminergic cells. J Neurosci Res 86:108–117. doi:10.1002/jnr.21478

    Article  CAS  Google Scholar 

  • Liu J, Yang D, Minemoto Y, Leitges M, Rosner MR, Lin A (2006) NF-kappaB is required for UV-induced JNK activation via induction of PKCdelta. Mol Cell 21:467–480. doi:10.1016/j.molcel.2005.12.020

    Article  CAS  Google Scholar 

  • Lobner D, Liot G (2004) Role of MAPK/ERK in neurotrophin-4 potentiation of necrotic neuronal death. Neurochem Res 29:2303–2309

    Article  CAS  Google Scholar 

  • Nishigori C, Hattori Y, Toyokuni S (2004) Role of reactive oxygen species in skin carcinogenesis. Antioxid Redox Signal 6:561–570. doi:10.1089/152308604773934314

    Article  CAS  Google Scholar 

  • Park CH, Lee MJ, Kim JP, Yoo ID, Chung JH (2006) Prevention of UV radiation-induced premature skin aging in hairless mice by the novel compound Melanocin A. Photochem Photobiol 82:574–578. doi:10.1562/2005-07-26-RA-623

    Article  CAS  Google Scholar 

  • Park S, Lee JB, Kang S (2012) Topical application of Chrysanthemum indicum L. attenuates the development of atopic dermatitis-like skin lesions by suppressing serum IgE levels, IFN-gamma, and IL-4 in Nc/Nga mice. Evid Based Complement Alternat Med 2012:821967. doi:10.1155/2012/821967

    Google Scholar 

  • Pognonec P (2009) ERK and cell death: overview. FEBS J 277:1. doi:10.1111/j.1742-4658.2009.07365.x

    Article  Google Scholar 

  • Quan T, Qin Z, Xia W, Shao Y, Voorhees JJ, Fisher GJ (2009) Matrix-degrading metalloproteinases in photoaging. J Investig Dermatol Symp Proc 14:20–24. doi:10.1038/jidsymp.2009.8

    Article  CAS  Google Scholar 

  • Scharffetter-Kochanek K, Wlaschek M, Brenneisen P, Schauen M, Blaudschun R, Wenk J (1997) UV-induced reactive oxygen species in photocarcinogenesis and photoaging. Biol Chem 378(11):1247–1257

  • Seite S, Fourtanier AM (2008) The benefit of daily photoprotection. J Am Acad Dermatol 58:S160–S166. doi:10.1016/j.jaad.2007.04.036

    Article  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167. doi:10.1016/j.molcel.2012.09.025

    Article  CAS  Google Scholar 

  • Trouba KJ, Hamadeh HK, Amin RP, Germolec DR (2002) Oxidative stress and its role in skin disease. Antioxid Redox Signal 4:665–673. doi:10.1089/15230860260220175

    Article  CAS  Google Scholar 

  • Tsuji G, Takahara M, Uchi H, Takeuchi S, Mitoma C, Moroi Y, Furue M (2011) An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway. J Dermatol Sci 62(1):42–49. doi:10.1016/j.jdermsci.2010.10.017

  • Vicentini FT, He T, Shao Y, Fonseca MJ, Verri WA Jr, Fisher GJ, Xu Y (2011) Quercetin inhibits UV irradiation-induced inflammatory cytokine production in primary human keratinocytes by suppressing NF-kappaB pathway. J Dermatol Sci 61:162–168. doi:10.1016/j.jdermsci.2011.01.002

    Article  CAS  Google Scholar 

  • Wölfle U, Esser PR, Simon-Haarhaus B, Martin SF, Lademann J, Schempp CM (2011) UVB-induced DNA damage, generation of reactive oxygen species, and inflammation are effectively attenuated by the flavonoid luteolin in vitro and in vivo. Free Radic Biol Med 50:1081–1093. doi:10.1016/j.freeradbiomed.2011.01.027

    Article  Google Scholar 

  • Xiang Y, Gao Q, Su W, Zeng L, Wang J, Hu Y, Nie W, Ma X, Zhang Y, Lee W (2012) Establishment, characterization and immortalization of a fibroblast cell line from the Chinese red belly toad Bombina maxima skin. Cytotechnology 64:95–105. doi:10.1007/s10616-011-9399-9

    Article  CAS  Google Scholar 

  • Xiang Y, Wang X, Yan C, Gao Q, Li SA, Liu J, Zhou K, Guo X, Lee W, Zhang Y (2013) Adenosine-5′-Triphosphate (ATP) Protects Mice against Bacterial Infection by Activation of the NLRP3 Inflammasome. PLoS ONE 8:e63759. doi:10.1371/journal.pone.0063759

    Article  CAS  Google Scholar 

  • Zaid MA, Afaq F, Syed DN, Dreher M, Mukhtar H (2007) Inhibition of UVB-mediated oxidative stress and markers of photoaging in immortalized HaCaT keratinocytes by pomegranate polyphenol extract POMx. Photochem Photobiol 83:882–888. doi:10.1111/j.1751-1097.2007.00157.x

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific Research Fund Project of the Yunnan Province Department of Education (2012Y149), Chinese National Natural Science Foundation (31301884, 81160302) and technological innovation projects of Chinese Academy of Sciences (022006).

Conflict of interests

The authors have declared that no competing interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yang Xiang.

Additional information

Sujiao Sun and Ping Jiang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Jiang, P., Su, W. et al. Wild chrysanthemum extract prevents UVB radiation-induced acute cell death and photoaging. Cytotechnology 68, 229–240 (2016). https://doi.org/10.1007/s10616-014-9773-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10616-014-9773-5

Keywords

Navigation