Skip to main content
Log in

Developing a Risk-Based Approach for American Basket Option Pricing

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Options are one of the important financial contracts for reducing the risk of investors. Many active practitioners in the financial markets really believe that mispricing or incorrect valuation of these securities would be the main reason of collapse of some financial institutions. The complexity of option pricing/valuation, especially in the case of American basket options, as high dimensional options, has motivated many researchers to develop numerical and simulation-based models. In this paper, a new simulation-based approach for pricing/valuation of American basket option with risk consideration is proposed. Having the prices obtained through Longstaff–Schwartz methodology, which is based on Approximate Dynamic Programming as a risk-neutral approach, we propose a new approach for pricing the American basket option according to the worst-case (pessimistic/risk-averse) and the best-case (optimistic/risk-taking) scenarios. Furthermore, for scenarios generation, we use a Monte Carlo simulation technique using a t-student copula-GARCH method and Extreme Value Theory to handle the nonlinearity of dependencies between variables. To verify the computational efficiency and the accuracy of the proposed methodology, we compare the results of prices obtained through the proposed models with those achieved through the Monte Carlo simulation and the method developed by Ju for European basket options. Moreover, the developed models are tested using out-sample scenarios to explore what would happen if investors bought the option with the obtained prices through three different strategies: risk-averse, risk-neutral, and risk-taking approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Antonelli, F., Mancini, C., & PıNAR, M. Ç. (2013). Calibrated American option pricing by stochastic linear programming. Optimization, 62, 1433–1450.

    Article  Google Scholar 

  • Bandi, C., & Bertsimas, D. (2014). Robust option pricing. European Journal of Operational Research, 239, 842–853.

    Article  Google Scholar 

  • Barraquand, J. (1995). Numerical valuation of high dimensional multivariate European securities. Management Science, 41(12), 1882–1891.

    Article  Google Scholar 

  • Barraquand, J., & Martineau, D. (1995). Numerical valuation of high dimensional multivariate American securities. Journal of Financial and Quantitative Analysis, 30, 383–405.

    Article  Google Scholar 

  • Bellman, R., & Dreyfus, S. (1959). Functional approximations and dynamic programming. Mathematical Tables and Other Aids to Computation, 13(68), 247–251.

    Article  Google Scholar 

  • Ben-Ameur, H., Breton, M., Karoui, L., & L’Ecuyer, P. (2007). A dynamic programming approach for pricing options embedded in bonds. Journal of Economic Dynamics and Control, 31, 2212–2233.

    Article  Google Scholar 

  • Benth, F. E., Karlsen, K. H., & Reikvam, K. (2003). A semilinear Black and Scholes partial differential equation for valuing American options. Finance and Stochastics, 7, 277–298.

    Article  Google Scholar 

  • Bouyé, E., Durrleman, V., Nikeghbali, A., Riboulet, G., & Roncalli, T. (2000). Copulas for finance-a reading guide and some applications. Available at SSRN 1032533.

  • Brandt, M. W., Goyal, A., Santa-Clara, P., & Stroud, J. R. (2005). A simulation approach to dynamic portfolio choice with an application to learning about return predictability. The Review of Financial Studies, 18(3), 831–873.

    Article  Google Scholar 

  • Breen, R. (1991). The accelerated binomial option pricing model. Journal of Financial and Quantitative Analysis, 26, 153–164.

    Article  Google Scholar 

  • Breitner, M. H. (2000). Heuristic option pricing with neural networks and the neuro-computer synapse 3. Optimization, 47, 319–333.

    Article  Google Scholar 

  • Broadie, M., & Glasserman, P. (2004). A stochastic mesh method for pricing high-dimensional American options. Journal of Computational Finance, 7, 35–72.

    Article  Google Scholar 

  • Caldana, R., Fusai, G., Gnoatto, A., & Grasselli, M. (2016). General closed-form basket option pricing bounds. Quantitative Finance, 16, 535–554.

    Article  Google Scholar 

  • Cho, H., Kim, K.-K., & Lee, K. (2016). Computing lower bounds on basket option prices by discretizing semi-infinite linear programming. Optimization Letters, 10(8), 1629–1644.

    Article  Google Scholar 

  • Cont, R., & Voltchkova, E. (2005). A finite difference scheme for option pricing in jump diffusion and exponential Lévy models. SIAM Journal on Numerical Analysis, 43, 1596–1626.

    Article  Google Scholar 

  • Cornuejols, G., & Tütüncü, R. (2007). optimization methods in finance. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cortazar, G., Gravet, M., & Urzua, J. (2008). The valuation of multidimensional American real options using the LSM simulation method. Computers & Operations Research, 35, 113–129.

    Article  Google Scholar 

  • Cox, J. C., Ross, S. A., & Rubinstein, M. (1979). Option pricing: A simplified approach. Journal of Financial Economics, 7, 229–263.

    Article  Google Scholar 

  • Cvitanić, J., & Zapatero, F. (2004). Introduction to the economics and mathematics of financial markets. Cambridge: MIT press.

    Google Scholar 

  • D’Aspremont, A., & El Ghaoui, L. (2006). Static arbitrage bounds on basket option prices. Mathematical Programming, 106, 467–489.

    Article  Google Scholar 

  • Daul, S., De Giorgi, E. G., Lindskog, F., & Mcneil, A. (2003). The grouped t-copula with an application to credit risk. Available at SSRN 1358956.

  • Davari-Ardakani, H., Aminnayeri, M., & Seifi, A. (2016). Multistage portfolio optimization with stocks and options. International Transactions in Operational Research, 23, 593–622.

    Article  Google Scholar 

  • Dehghan, M., & Bastani, A. F. (2017). Asymptotic expansion of solutions to the Black-Scholes equation arising from American option pricing near the expiry. Journal of Computational and Applied Mathematics, 311, 11–37.

    Article  Google Scholar 

  • Elliott, R. J., & Siu, T. K. (2011). A risk-based approach for pricing American options under a generalized Markov regime-switching model. Quantitative Finance, 11, 1633–1646.

    Article  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987–1007.

    Article  Google Scholar 

  • Gagliardini, P., & Ronchetti, D. (2013). Semi-parametric estimation of American option prices. Journal of Econometrics, 173, 57–82.

    Article  Google Scholar 

  • Glosten, L. R., Jagannathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. The Journal of Finance, 48, 1779–1801.

    Article  Google Scholar 

  • Gosavi, A. (2014). Simulation-based optimization: Parametric optimization techniques and reinforcement learning. Berlin: Springer.

    Google Scholar 

  • Gouriéroux, C. (2012). ARCH models and financial applications. Berlin: Springer.

    Google Scholar 

  • Hajizadeh, E., Mahootchi, M., Esfahanipour, A., & Massahi Kh., M. (2015). A new NN-PSO hybrid model for forecasting Euro/Dollar exchange rate volatility. Neural Computing and Applications, 1–9. https://doi.org/10.1007/s00521-015-2032-7.

  • Haugh, M. B., & Kogan, L. (2007). Chapter 22 duality theory and approximate dynamic programming for pricing American options and portfolio optimization. In R. B. John & L. Vadim (Eds.), Handbooks in operations research and management science. New York: Elsevier.

    Google Scholar 

  • Huang, J.-Z., Subrahmanyam, M. G., & Yu, G. G. (1996). Pricing and hedging American options: A recursive integration method. The Review of Financial Studies, 9, 277–300.

    Article  Google Scholar 

  • Hull, J. C. (2006). Options, futures, and other derivatives. Pearson Education India.

  • Ju, N. (2002). Pricing Asian and basket options via Taylor expansion. Journal of Computational Finance, 5, 79–103.

    Article  Google Scholar 

  • Kohler, M., & Krzyżak, A. (2012). Pricing of American options in discrete time using least squares estimates with complexity penalties. Journal of Statistical Planning and Inference, 142, 2289–2307.

    Article  Google Scholar 

  • Lee, S., & Kim, B. (2015). Copula parameter change test for nonlinear AR models with nonlinear GARCH errors. Statistical Methodology, 25, 1–22.

    Article  Google Scholar 

  • Li, M., & Yang, L. (2013). Modeling the volatility of futures return in rubber and oil—a Copula-based GARCH model approach. Economic Modelling, 35, 576–581.

    Article  Google Scholar 

  • Lian, Y.-M., Liao, S.-L., & Chen, J.-H. (2015). State-dependent jump risks for American gold futures option pricing. The North American Journal of Economics and Finance, 33, 115–133.

    Article  Google Scholar 

  • Ljung, G. M., & Box, G. E. P. (1978). On a measure of a lack of fit in time series models. Biometrika, 65, 297–303.

    Article  Google Scholar 

  • Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: A simple least-squares approach. Review of Financial Studies, 14, 113–147.

    Article  Google Scholar 

  • Maciel, L., Gomide, F., & Ballini, R. (2016). Evolving fuzzy-GARCH approach for financial volatility modeling and forecasting. Computational Economics, 48(3), 379–398.

    Article  Google Scholar 

  • McNeil, A. J., & Frey, R. (2000). Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach. Journal of Empirical Finance, 7, 271–300.

    Article  Google Scholar 

  • Mitchell, D., Goodman, J., & Muthuraman, K. (2014). Boundary evolution equations for American options. Mathematical Finance, 24, 505–532.

    Article  Google Scholar 

  • Moon, K.-S., Kim, W.-J., & Kim, H. (2008). Adaptive lattice methods for multi-asset models. Computers & Mathematics with Applications, 56, 352–366.

    Article  Google Scholar 

  • Nystrom, K., & Skoglund, J. (2002). Univariate extreme value theory, garch and measures of risk. Swedbank: Preprint.

    Google Scholar 

  • Powell, W. B. (2007). Approximate dynamic programming: Solving the curses of dimensionality. Hoboken: Wiley.

    Book  Google Scholar 

  • Powell, W. B. (2011). Approximate dynamic programming: Solving the curses of dimensionality. Hoboken: Wiley.

    Book  Google Scholar 

  • Samimi, O., Mardani, Z., Sharafpour, S., & Mehrdoust, F. (2017). LSM algorithm for pricing American option under Heston–Hull–White’s stochastic volatility model. Computational Economics, 50(2), 173–187.

    Article  Google Scholar 

  • Sklar, M. (1959). Fonctions de répartition à n dimensions et leurs marges. Saint-Denis: Université Paris 8.

    Google Scholar 

  • Stentoft, L. (2011). American option pricing with discrete and continuous time models: An empirical comparison. Journal of Empirical Finance, 18, 880–902.

    Article  Google Scholar 

  • Tian, S., & Hamori, S. (2015). Modeling interest rate volatility: A Realized GARCH approach. Journal of Banking & Finance, 61, 158–171.

    Article  Google Scholar 

  • Tsitsiklis, J. N., & Roy, B. V. (2001). Regression methods for pricing complex American-style options. IEEE Transactions on Neural Networks, 12, 694–703.

    Article  Google Scholar 

  • Wang, S., Zhang, S., & Fang, Z. (2015). A superconvergent fitted finite volume method for Black–Scholes equations governing European and American option valuation. Numerical Methods for Partial Differential Equations, 31, 1190–1208.

    Article  Google Scholar 

  • Yuen, F. L., & Yang, H. (2010). Option pricing with regime switching by trinomial tree method. Journal of Computational and Applied Mathematics, 233, 1821–1833.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masoud Mahootchi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajizadeh, E., Mahootchi, M. Developing a Risk-Based Approach for American Basket Option Pricing. Comput Econ 53, 1593–1612 (2019). https://doi.org/10.1007/s10614-018-9826-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-018-9826-5

Keywords

Navigation