Skip to main content

Advertisement

Log in

An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Cumulative prospect theory (CPT) has become one of the most popular approaches for evaluating the behavior of decision makers under conditions of uncertainty. Substantial experimental evidence suggests that human behavior may significantly deviate from the traditional expected utility maximization framework when faced with uncertainty. The problem of portfolio selection should be revised when the investor’s preference is for CPT instead of expected utility theory. However, because of the complexity of the CPT function, little research has investigated the portfolio choice problem based on CPT. In this paper, we present an operational model for portfolio selection under CPT, and propose a real-coded genetic algorithm (RCGA) to solve the problem of portfolio choice. To overcome the limitations of RCGA and improve its performance, we introduce an adaptive method and propose a new selection operator. Computational results show that the proposed method is a rapid, effective, and stable genetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We use the definition of He and Zhou (2011).

  2. The objective function (12), which involves numerical integration, is solved using Matlab’s “integral” and “normcdf”functions.

  3. The data are derived by Hu and Kercheval (2010) and the four stocks are Disney, Pfizer, Altria, Intel.

  4. All results in these tables are global optimal solutions given by the exhaustive method to three decimal places.

References

  • Allais, M. (1953). Le comportement de l’homme rationnel devant le risque: Critique des postulats et axiomes de l’ecole Americaine. Econometrica, 21(21), 503–546.

    Article  Google Scholar 

  • Bäck, T.(1996). Selective pressure in evolutionary algorithms: A characterization of selection mechanisms. Evolutionary Computation, 1994. In proceedings of the first IEEE conference on IEEE world congress on computational intelligence, (Vol. 1, pp. 57–62). IEEE.

  • Back, T., Hoffmeister, F., & Schwefel, H. P. (1994). A survey of evolution strategies. In International conference on genetic algorithms, (pp. 2–9).

  • Baixauli-Soler, J. S., Alfaro-Cid, E., & Fernandez-Blanco, M. O. (2011). Mean-var portfolio selection under real constraints. Computational Economics, 37(2), 113–131.

    Article  Google Scholar 

  • Baker, J. E. (1985). Adaptive selection methods for genetic algorithms. Proceedings of an international conference on genetic algorithms and their applications (pp. 101–111). New Jersey: Hillsdale.

    Google Scholar 

  • Barberis, N., & Huang, M. (2008). Stocks as lotteries: The implications of probability weighting for security prices. The American Economic Review, 98(5), 2066–2100.

    Article  Google Scholar 

  • Barberis, N., Huang, M., & Santos, T. (1999). Prospect theory and asset prices. Quarterly Journal of Economics, 116(1), 1–53.

    Article  Google Scholar 

  • Barberis, N., Huang, M., & Thaler, R. H. (2006). Individual preferences, monetary gambles, and stock market participation: A case for narrow framing. American Economic Review, 96(4), 1069–1090.

    Article  Google Scholar 

  • Barberis, N. C. (2013). Thirty years of prospect theory in economics: A review and assessment. The Journal of Economic Perspectives, 27(1), 173–195.

    Article  Google Scholar 

  • Baskar, S., Subbaraj, P., & Chidambaram, P. (2001). Application of genetic algorithms to unit commitment problem. Journal of Institute of Engineering (India), 81, 195–199.

    Google Scholar 

  • Baskar, S., Subbaraj, P., Rao, M., & Tamilselvi, S. (2003). Genetic algorithms solution to generator maintenance scheduling with modified genetic operators. Generation, Transmission and Distribution, IEE Proceedings, IET, 150, 56–60.

    Article  Google Scholar 

  • Baskar, S., Subbaraj, P., & Rao, M. (2004). Performance of real coded genetic algorithms with new genetic operators. Journal of The Institution of Engineers (India), 85, 124–128.

    Google Scholar 

  • Benartzi, S., & Thaler, R. H. (1995). Myopic loss aversion and the equity premium puzzle. Quarterly Journal of Economics, 110(1), 73–92.

    Article  Google Scholar 

  • Bernard, C., & Ghossoub, M. (2010). Static portfolio choice under cumulative prospect theory. Mathematics and Financial Economics, 2(4), 277–306.

    Article  Google Scholar 

  • Birnbaum, M. H., & Chavez, A. (1997). Tests of theories of decision making: Violations of branch independence and distribution independence. Organizational Behavior and Human Decision Processes, 71(2), 161–194.

    Article  Google Scholar 

  • Bleichrodt, H., & Pinto, J. L. (2000). A parameter-free elicitation of the probability weighting function in medical decision analysis. Management Science, 46(11), 1485–1496.

    Article  Google Scholar 

  • Blondel, S. (2002). Testing theories of choice under risk: Estimation of individual functionals. Journal of Risk and Uncertainty, 24(3), 251–265.

    Article  Google Scholar 

  • Blum, S., Puisa, R., Riedel, J., & Wintermantel, M. (2001). Adaptive mutation strategies for evolutionary algorithms. In The annual conference: EVEN at Weimarer Optimierungsund Stochastiktage, (Vol. 2).

  • Camerer, C. F., & Ho, T. H. (1994). Violations of the betweenness axiom and nonlinearity in probability. Journal of Risk and Uncertainty, 8(2), 167–196.

    Article  Google Scholar 

  • Chang, T. J., Meade, N., Beasley, J. E., & Sharaiha, Y. M. (2000). Heuristics for cardinality constrained portfolio optimisation. Computers and Operations Research, 27(13), 1271–1302.

    Article  Google Scholar 

  • Chelouah, R., & Siarry, P. (2003). Genetic and neldermead algorithms hybridized for a more accurate global optimization of continuous multiminima functions. European Journal of Operational Research, 148(2), 335–348.

    Article  Google Scholar 

  • Coelho, L. A. G. (2014). Portfolio selection optimization under cumulative prospect theorya parameter sensibility analysis. In CEFAGE-UE working Papers.

  • Crow, J. F., & Kimura, M. (1979). Efficiency of truncation selection. Proceedings of the National Academy of Sciences of the United States of America, 76(1), 396–399.

    Article  Google Scholar 

  • Deb, K., & Beyer, H. G. (1999). Self-adaptation in real-parameter genetic algorithms with simulated binary crossover. In conference on genetic and evolutionary computation (pp. 172–179). Morgan Kaufmann Publishers Inc.

  • Deb, K., & Goyal, M. (1996). A combined genetic adaptive search (GeneAS) for engineering design. Computer Science and Informatics, 26, 30–45.

    Google Scholar 

  • Deep, K., & Thakur, M. (2007). A new mutation operator for real coded genetic algorithms. Applied Mathematics and Computation, 193(1), 211–230.

    Article  Google Scholar 

  • Ellsberg, D. (2000). Risk, ambiguity, and the savage axioms. The Quarterly Journal of Economics, 75(4), 643–669.

    Article  Google Scholar 

  • Fennema, H., & Assen, M. V. (1998). Measuring the utility of losses by means of the tradeoff method. Journal of Risk and Uncertainty, 17(3), 277–296.

    Article  Google Scholar 

  • Giorgi, E. D., Hens, T., & Mayer, J. (2007). Computational aspects of prospect theory with asset pricing applications. Computational Economics, 29(3), 267–281.

    Article  Google Scholar 

  • Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Boston: Addison-Wesley Longman Publishing Co. Inc.

    Google Scholar 

  • Goldberg, D. E., & Deb, K. (1991). A comparative analysis of selection schemes used in genetic algorithms. Foundations of Genetic Algorithms, 1, 69–93.

    Google Scholar 

  • Gonzalez, R., & Wu, G. (1999). On the shape of the probability weighting function. Cognitive Psychology, 38(1), 129–166.

    Article  Google Scholar 

  • Grüne, L., & Semmler, W. (2008). Asset pricing with loss aversion. Journal of Economic Dynamics & Control, 32(10), 3253–3274.

    Article  Google Scholar 

  • Hancock, P. J. B. (1994). An empirical comparison of selection methods in evolutionary algorithms. Lecture Notes in Computer Science, 865(15), 80–94.

    Article  Google Scholar 

  • He, X. D., & Zhou, X. Y. (2011). Portfolio choice under cumulative prospect theory: An analytical treatment. Management Science, 57(2), 315–331.

    Article  Google Scholar 

  • Herrera, F., Lozano, M., & Verdegay, J. L. (1998). Tackling real-coded genetic algorithms: Operators and tools for behavioural analysis. Artificial Intelligence Review, 12(4), 265–319.

    Article  Google Scholar 

  • Hoffmeister, F., & Bäck, T. (1991). Parallel problem solving from nature., Genetic algorithms and evolution strategies: Similarities and differences Berlin: Springer.

    Google Scholar 

  • Hogg, R. V., & Craig, A. T. (1995). Introduction into mathematical statistics. Englewood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  • Holand, J. H. (1975). Adaption in natural and artificial systems. Control and Artificial Intelligence University of Michigan Press, 6(2), 126–137.

    Google Scholar 

  • Hrstka, O., & Kučerová, A. (2004). Improvements of real coded genetic algorithms based on differential operators preventing premature convergence. Advances in Engineering Software, 35(35), 237–246.

    Article  Google Scholar 

  • Huimei, Y. (2000). Adaptive crossover rate and mutation rate in genetic algorithms. Journal of Capital Normal University (Natural Science Edition), 21(3), 14–20.

    Google Scholar 

  • Ingersoll, J. (2008). Non-monotonicity of the Tversky–Kahneman probability-weighting function: A cautionary note. European Financial Management, 14(3), 385–390.

    Article  Google Scholar 

  • Jin, H., & Yu Zhou, X. (2008). Behavioral portfolio selection in continuous time. Mathematical Finance, 18(3), 385–426.

    Article  Google Scholar 

  • Kaelo, P., & Ali, M. M. (2007). Integrated crossover rules in real coded genetic algorithms. European Journal of Operational Research, 176(1), 60–76.

    Article  Google Scholar 

  • Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. Econometrica, 47(2), 263–291.

    Article  Google Scholar 

  • Levy, H., & Levy, M. (2004). Prospect theory and mean–variance analysis. Review of Financial Studies, 17(4), 1015–1041.

    Article  Google Scholar 

  • Lin, W. Y., Lee, W. Y., & Hong, T. P. (2003). Adapting crossover and mutation rates in genetic algorithms. Journal of Information Science and Engineering, 19(5), 889–903.

    Google Scholar 

  • Luce, R. D. (1991). Rank- and sign-dependent linear utility models for binary gambles. Journal of Risk and Uncertainty, 53(1), 75–100.

    Google Scholar 

  • Luce, R. D. (2001). Reduction invariance and prelec’s weighting functions. Journal of Mathematical Psychology, 45(1), 167–179.

    Article  Google Scholar 

  • Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91.

    Google Scholar 

  • Michalewicz, Z. (1994). Genetic algorithms + data structures = evolution programs. Computational Statistics and Data Analysis, 24(3), 372–373.

    Google Scholar 

  • Pirvu, T. A., & Schulze, K. (2012). Multi-stock portfolio optimization under prospect theory. Mathematics and Financial Economics, 6(4), 337–362.

    Article  Google Scholar 

  • Quiggin, J. (1982). A theory of anticipated utility. Journal of Economic Behavior and Organization, 3(4), 323–343.

    Article  Google Scholar 

  • Ranković, V., Drenovak, M., Stojanović, B., Kalinić, Z., & Arsovski, Z. (2014). The mean-value at risk static portfolio optimization using genetic algorithm. Computer Science and Information Systems, 11(1), 89–109.

    Article  Google Scholar 

  • Rudolph, G. (1994). Convergence analysis of canonical genetic algorithms. IEEE Transactions on Neural Networks, 5(1), 96–101.

    Article  Google Scholar 

  • Samuelson, W., & Zeckhauser, R. (1988). Status quo bias in decision making. Journal of Risk and Uncertainty, 1(1), 7–59.

    Article  Google Scholar 

  • Schmidt, U., & Zank, H. (2008). Risk aversion in cumulative prospect theory. Management Science, 54(1), 208–216.

    Article  Google Scholar 

  • Srinivas, M., & Patnaik, L. M. (1994). Adaptive probabilities of crossover and mutation in genetic algorithms. IEEE Transactions on Systems Man and Cybernetics, 24(4), 656–667.

    Article  Google Scholar 

  • Stracca, L. (2002). The optimal allocation of risks under prospect theory. Social Science Electronic Publishing, 27(2), 697–711.

    Google Scholar 

  • Subbaraj, P., Rengaraj, R., & Salivahanan, S. (2009). Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm. Applied Energy, 86(6), 915–921.

    Article  Google Scholar 

  • Subbaraj, P., Rengaraj, R., & Salivahanan, S. (2011). Enhancement of self-adaptive real-coded genetic algorithm using taguchi method for economic dispatch problem. Applied Soft Computing, 11(1), 83–92.

    Article  Google Scholar 

  • Thaler, R. (1980). Toward a positive theory of consumer choice. Journal of Economic Behavior and Organization, 1(1), 39–60.

    Article  Google Scholar 

  • Thierens, D., & Goldberg, D. (1994a) Convergence models of genetic algorithm selection schemes. In Proceedings parallel problem solving from nature-PPSN III, International conference on evolutionary computation. The third conference on parallel problem solving from nature, Jerusalem, Israel, Oct 9–14, 1994, (Vol. 866, pp. 119–129), DBLP.

  • Thierens, D., & Goldberg, D. (1994b) Elitist recombination: An integrated selection recombination GA. Evolutionary computation, 1994. In Proceedings of the first IEEE conference on IEEE world congress on computational intelligence. (Vol.1, pp. 508–512 ). IEEE Xplore.

  • Tsao, C. Y. (2010). Portfolio selection based on the mean–var efficient frontier. Quantitative Finance, 10(8), 931–945.

    Article  Google Scholar 

  • Tsutsui, S., & Goldberg, D. E. (2001). Search space boundary extension method in real-coded genetic algorithms. Information Sciences, 133(3), 229–247.

    Article  Google Scholar 

  • Tversky, A., & Kahneman, D. (1992). Advances in prospect theory: Cumulative representation of uncertainty. Journal of Risk and Uncertainty, 5(4), 297–323.

    Article  Google Scholar 

  • Whitley, D. (1989). The GENITOR, algorithm and selection pressure: Why rank-based allocation of reproductive trials is best. International conference on genetic algorithms. San Francisco: Morgan Kaufmann Publishers Inc.

    Google Scholar 

  • Wenbo, Hu, & Kercheval, Alec N. (2010). Portfolio optimization for student t and skewed t returns. Quantitative Finance, 10(10), 91–105.

    Google Scholar 

  • Wu, G., & Gonzalez, R. (1996). Curvature of the probability weighting function. Management Science, 42(12), 1676–1690.

    Article  Google Scholar 

  • Yang, X. (2006). Improving portfolio efficiency: A genetic algorithm approach. Computational Economics, 28(1), 1–14.

    Article  Google Scholar 

  • Yun, Y., Gen, M., & Seo, S. (2003). Various hybrid methods based on genetic algorithm with fuzzy logic controller. Journal of Intelligent Manufacturing, 14(3), 401–419.

    Article  Google Scholar 

  • Zhang, J., Chung, S. H., & Lo, W. L. (2007). Clustering-based adaptive crossover and mutation probabilities for genetic algorithms. Evolutionary Computation IEEE Transactions on, 11(3), 326–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Gong.

Appendix

Appendix

Proof of Lemma 1: According to the definitions of the value functions and weighing functions, they all are differentiable. We can obtain

$$\begin{aligned}&\int \limits _{0}^{+\infty }v^+(t)dw^+(1-F_D(t)) \nonumber \\&= v^+(t)w^+(1-F_D(t))|_0^{+\infty } \nonumber \\&- \int \limits _{0}^{+\infty }w^+(1-F_D(t))dv^+(t) \end{aligned}$$
(25)

using integration by parts.

He and Zhou (2011) showed that, if the return on a portfolio follows a normal distribution and |t| and \(0<F_D(t)<1\) are sufficiently large, then (5) and (6) satisfy:

$$\begin{aligned} w^{+'}(F_D(t))f_D(t)=O\left( |t|^{-2-\varepsilon }\right) \nonumber \\ w^{-'}(F_D(t))f_D(t)=O\left( |t|^{-2-\varepsilon }\right) \end{aligned}$$
(26)
$$\begin{aligned} w^{+'}(1-F_D(t))f_D(t)=O\left( |t|^{-2-\varepsilon }\right) \nonumber \\ w^{-'}(1-F_D(t))f_D(t)=O\left( |t|^{-2-\varepsilon }\right) \end{aligned}$$
(27)

where \(\varepsilon >0\).

Furthermore, from L’Hopital’s rule, we know that

$$\begin{aligned} \lim _{t\rightarrow \infty }v^+(t)w^+(1-F_D(t)) \nonumber \\ =\lim _{t\rightarrow \infty }\frac{w^+(1-F_D(t))}{\frac{1}{v^+(t)}}=0 \end{aligned}$$
(28)

We can obtain that

$$\begin{aligned} \int \limits _{0}^{+\infty }v^+(t)dw^+(1-F_D(t)) \nonumber \\ =- \int \limits _{0}^{+\infty }w^+(1-F_D(t))dv^+(t) \end{aligned}$$
(29)

Similarly, we have

$$\begin{aligned} \int \limits _{-\infty }^{0}v^-(t)dw^+(F_D(t)) \nonumber \\ =- \int \limits _{-\infty }^{0}w^-(F_D(t))dv^-(t) \end{aligned}$$
(30)

Proof of Proposition 1: Hogg and Craig (1995) have shown that a linear transformation of multivariate normal random vectors has a multivariate normal distribution, namely, suppose that \({\varvec{R}}\) has the distribution \(N_n({\varvec{\mu }},{\varSigma })\) and \(D={\varvec{AR}}+b\), where \({\varvec{A}}\) is an \(m\times n\) matrix and \(b\in {\varvec{R}}^m \). Then, D has the distribution \(N_m({\varvec{A}}{\varvec{\mu }},{\varvec{A}}{\varSigma }{\varvec{A}}')\). Proposition 1 can be proved when \(m=1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Xu, C. & Wang, J. An Efficient Adaptive Real Coded Genetic Algorithm to Solve the Portfolio Choice Problem Under Cumulative Prospect Theory. Comput Econ 52, 227–252 (2018). https://doi.org/10.1007/s10614-017-9669-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-017-9669-5

Keywords

Navigation