Skip to main content

Advertisement

Log in

An Outlook on the Biomass Energy Development Out to 2100 in China

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Biomass energy is critical to future low-carbon economic development facing the challenge to mitigate the high carbon emission from conventional energy exploitation. Biomass energy developed from energy plants will play a more important role in future energy supply in China. As cultivated land resources are limited and critical to food security, the development of energy plants in China should rely on the exploitation of marginal land. In this study, based on three scenario-based (RCP2.6, RCP4.5 and RCP8.5) land cover datasets, the Net Primary Productivity (NPP) dataset, the dataset of marginal land suitable resources for cultivating bioenergy crops, and protected area dataset, firstly, we spatially identify and quantify the available areas of three types of marginal land, including abandoned agricultural land, low-productivity land and the ‘rest land’; then, the geographical potentials of biomass energy are calculated through multiplying the available area for energy plants by the corresponding productivity out to 2100 in China. The results show that significant potentials for biomass production are found in the south of China, such as Yunnan, Sichuan, Guizhou and Guangxi provinces. The total geographical potential biomass energy of the marginal land ranges from 17.813 to \(19.373\,\hbox {EJ}\,\hbox {year}^{-1}\) under the three scenarios, reaching the highest under RCP8.5 scenario, and the geographical potential biomass energy of the ‘rest land’ is the largest contributor, accounting for more than 90% of the total potential biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartholomé, E., & Belward, A. (2005). GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing, 26(9), 1959–1977.

    Google Scholar 

  • Cai, X., Zhang, X., & Wang, D. (2010). Land availability for biofuel production. Environmental Science and Technology, 45(1), 334–339.

    Google Scholar 

  • Campbell, J. E., Lobell, D. B., Genova, R. C., & Field, C. B. (2008). The global potential of bioenergy on abandoned agriculture lands. Environmental Science and Technology, 42(15), 5791–5794.

    Google Scholar 

  • Chen, S., & Chen, B. (2015). Life cycle assessment of biogas systems, Handbook of clean energy systems. New York: Wiley.

    Google Scholar 

  • Chen, Z., Chen, G., & Chen, B. (2013). Embodied carbon dioxide emission by the globalized economy: A systems ecological input–output simulation. Journal of Environmental Informatics, 21(1), 35–44.

    Google Scholar 

  • Chong-Hai, X., & Ying, X. (2012). The projection of temperature and precipitation over China under RCP scenarios using a CMIP5 multi-model ensemble. Atmospheric and Oceanic Science Letters, 5(6), 527–533.

    Google Scholar 

  • Demirbas, M. F., Balat, M., & Balat, H. (2009). Potential contribution of biomass to the sustainable energy development. Energy Conversion and Management, 50(7), 1746–1760.

    Google Scholar 

  • Dornburg, V., Faaij, A., Verweij, P., Langeveld, H., van de Ven, G., Wester, F., et al. (2008). Biomass assessment: Assessment of global biomass potentials and their links to food, water, biodiversity, energy demand and economy: Main report. Report/WAB(500102 012)

  • Drigo, R. (2007). Woodenergy supply/demand scenarios in the context of poverty mapping. A WISDOM case study in Southeast Asia for the years 2000 and 2015. Rome: Food & Agriculture Org.

  • Fan, Z., Li, J., Yue, T., Zhou, X., & Lan, A. (2015). Scenarios of land cover in Karst area of Southwestern China. Environmental Earth Sciences, 74(8), 6407–6420.

    Google Scholar 

  • Fan, Z. M., Yue, T. X., Liu, J. Y., & Ma, S. N. (2005). Spatial and temporal distribution of land cover scenarios in China. Acta Geographica Sinica, 60(6), 941–952 (in Chinese).

  • Feng, K., Siu, Y. L., Guan, D., & Hubacek, K. (2012). Analyzing drivers of regional carbon dioxide emissions for China. Journal of Industrial Ecology, 16(4), 600–611.

    Google Scholar 

  • Field, C. B., Campbell, J. E., & Lobell, D. B. (2008). Biomass energy: The scale of the potential resource. Trends in Ecology and Evolution, 23(2), 65–72.

    Google Scholar 

  • Fischer, G., Prieler, S., van Velthuizen, H., Berndes, G., Faaij, A., Londo, M., et al. (2010). Biofuel production potentials in Europe: Sustainable use of cultivated land and pastures, Part II: Land use scenarios. Biomass and Bioenergy, 34(2), 173–187.

    Google Scholar 

  • Fischer, G., & Schrattenholzer, L. (2001). Global bioenergy potentials through 2050. Biomass and Bioenergy, 20(3), 151–159.

    Google Scholar 

  • Fu, J., Jiang, D., Huang, Y., Zhuang, D., & Ji, W. (2014). Evaluating the marginal land resources suitable for developing bioenergy in Asia. Advances in Meteorology, 2014, 9. doi:10.1155/2014/238945.

    Article  Google Scholar 

  • Gibbs, H. K., Brown, S., Niles, J. O., & Foley, J. A. (2007). Monitoring and estimating tropical forest carbon stocks: making REDD a reality. Environmental Research Letters, 2(4), 045023.

    Google Scholar 

  • Hall, D. O., Rosillo-Calle, F., Williams, R. H., & Woods, J. (1993). Biomass for energy: Supply prospects. London: Earthscan.

    Google Scholar 

  • Hoogwijk, M., Faaij, A., de Vries, B., & Turkenburg, W. (2009). Exploration of regional and global cost-supply curves of biomass energy from short-rotation crops at abandoned cropland and rest land under four IPCC SRES land-use scenarios. Biomass and Bioenergy, 33(1), 26–43. doi:10.1016/j.biombioe.2008.04.005.

    Article  Google Scholar 

  • Hoogwijk, M., Faaij, A., Eickhout, B., de Vries, B., & Turkenburg, W. (2005). Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass and Bioenergy, 29(4), 225–257. doi:10.1016/j.biombioe.2005.05.002.

    Article  Google Scholar 

  • Hoogwijk, M., Faaij, A., van den Broek, R., Berndes, G., Gielen, D., & Turkenburg, W. (2003). Exploration of the ranges of the global potential of biomass for energy. Biomass and Bioenergy, 25(2), 119–133. doi:10.1016/s0961-9534(02)00191-5.

    Article  Google Scholar 

  • Hui, D., & Jackson, R. B. (2006). Geographical and interannual variability in biomass partitioning in grassland ecosystems: A synthesis of field data. New Phytologist, 169(1), 85–93.

    Google Scholar 

  • Jiang, D., Hao, M., Fu, J., Zhuang, D., & Huang, Y. (2014). Spatial–temporal variation of marginal land suitable for energy plants from 1990 to 2010 in China. Scientific Reports, 4, 5816.

  • Kajimoto, T., Matsuura, Y., Sofronov, M., Volokitina, A., Mori, S., Osawa, A., et al. (1999). Above-and belowground biomass and net primary productivity of a Larix gmelinii stand near Tura, central Siberia. Tree Physiology, 19(12), 815–822.

    Google Scholar 

  • Kanazawa, Y., Osawa, A., Ivanov, B., & Maximov, T. (1993). Biomass of a Larix gmelinii (RUPR.) LITV. stand in Spaskayapad, Yakutsk. In Proceedings of the second symposium on the joint Siberian permafrost studies between Japan and Russia in (pp. 153–158).

  • Kou, J. P., Bi, Y. Y., Zhao, L. X., Gao, C. Y., Tian, Y. S., Wei, S. Y., et al. (2008). Investigation and evaluation on wasteland for energy crops in China. Renewable Energy Resources, 26(6), 3–9 (in Chinese).

  • Li, J., Fan, Z. M., & Yue, T. X. (2014). Spatio-temporal simulation of land cover scenarios in southwersern of China. Acta Ecologica Sinica, 34(12), 3266–3275 (in Chinese).

  • Lin, T., Yu, Y., Bai, X., Feng, L., & Wang, J. (2013). Greenhouse gas emissions accounting of urban residential consumption: A household survey based approach. PloS ONE, 8(2), e55642.

    Google Scholar 

  • Litton, C. M., Ryan, M. G., Tinker, D. B., & Knight, D. H. (2003). Belowground and aboveground biomass in young postfire lodgepole pine forests of contrasting tree density. Canadian Journal of Forest Research, 33(2), 351–363.

    Google Scholar 

  • Liu, Z., Guan, D., Wei, W., Davis, S. J., Ciais, P., Bai, J., et al. (2015). Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524(7565), 335–338.

    Google Scholar 

  • Luo, Y., Wang, X., Zhang, X., Ren, Y., & Poorter, H. (2013). Variation in biomass expansion factors for China’s forests in relation to forest type, climate, and stand development. Annals of Forest Science, 70(6), 589–599.

    Google Scholar 

  • Metz, B., Davidson, O. R., Bosch, P. R., Dave, R., & Meyer, L. A. (2007). Climate change 2007: Mitigation: Contribution of working group III to the fourth assessment report of the intergovernmental panel on climate change. Geneva: Intergovernmental Panel on Climate Change.

    Google Scholar 

  • Mooney, H., & Chiariello, N. (1984). Study of plant function—The plant as a balanced system. In R. Dirzo, & J. Sarukhan (Eds.), Perspectives on plant population ecology. Sinauer Associates Inc.

  • Moreira, R. (2006). Global biomass energy potential. Mitigation and Adaptation Strategies for Global Change, 11(2), 313–333.

    Google Scholar 

  • Morhart, C., Sheppard, J. P., Schuler, J. K., & Spiecker, H. (2016). Above-ground woody biomass allocation and within tree carbon and nutrient distribution of wild cherry (Prunus avium L.)—a case study. Forest Ecosystems, 3(1), 1.

    Google Scholar 

  • Offermann, R., Seidenberger, T., Thran, D., Kaltschmitt, M., Zinoviev, S., & Miertus, S. (2011). Assessment of global bioenergy potentials. Mitigation and Adaptation Strategies for Global Change, 16(1), 103–115. doi:10.1007/s11027-010-9247-9.

    Article  Google Scholar 

  • Openshaw, K., Mastorakis, N., & Corbi, I. (2015). Energy values of unprocessed biomass, charcoal and other biomass fuels and their role in greenhouse gas mitigation and energy use. Advances in Environmental Science and Energy Planning, 30–40

  • Riahi, K., Rao, S., Krey, V., Cho, C., Chirkov, V., Fischer, G., et al. (2011). RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Climatic Change, 109(1–2), 33–57.

    Google Scholar 

  • Saha, M., & Eckelman, M. J. (2015). Geospatial assessment of potential bioenergy crop production on urban marginal land. Applied Energy, 159, 540–547.

    Google Scholar 

  • Schlesinger, W. H. (1991). Biogeochemistry, an analysis of global change. New York: Academic Press.

    Google Scholar 

  • Shi, Y. (2011). China’s resources of biomass feedstock. Engineering Sciences, 13(2), 16–23 (in Chinese).

  • Smeets, E. M., & Faaij, A. P. (2007). Bioenergy potentials from forestry in 2050. Climatic Change, 81(3–4), 353–390.

    Google Scholar 

  • Smil, V. (1999). Crop residues: Agriculture’s largest harvest crop residues incorporate more than half of the world’s agricultural phytomass. Bioscience, 49(4), 299–308.

    Google Scholar 

  • Song, M., Wang, S., Yu, H., Yang, L., & Wu, J. (2011). To reduce energy consumption and to maintain rapid economic growth: Analysis of the condition in China based on expended IPAT model. Renewable and Sustainable Energy Reviews, 15(9), 5129–5134.

    Google Scholar 

  • Tang, Y., Xie, J. S., & Geng, S. (2010). Marginal land-based biomass energy production in China. Journal of Integrative Plant Biology, 52(1), 112–121.

    Google Scholar 

  • Taylor, K. E., Stouffer, R. J., & Meehl, G. A. (2012). An overview of CMIP5 and the experiment design. Bulletin of the American Meteorological Society, 93(4), 485–498.

    Google Scholar 

  • Thomas, S. C., & Martin, A. R. (2012). Carbon content of tree tissues: A synthesis. Forests, 3(2), 332–352.

    Google Scholar 

  • Thomson, A. M., Calvin, K. V., Smith, S. J., Kyle, G. P., Volke, A., Patel, P., et al. (2011). RCP4. 5: A pathway for stabilization of radiative forcing by 2100. Climatic Change, 109(1–2), 77–94.

    Google Scholar 

  • Turley, D., Taylor, M., Laybourn, R., Hughes, J., Kilpatrick, J., Procter, C., et al. (2010). Assessment of the availability of ‘marginal’and ‘idle’land for bioenergy crop production in England and Wales. DEFRA, NF0444, London, 86. Available at http://randd.defra.gov.uk/Document.aspx?Document=NF0444_9473_FRP.pdf. Accessed 30 Mar 2016.

  • Van Vuuren, D. P., Stehfest, E., den Elzen, M. G., Kram, T., van Vliet, J., Deetman, S., et al. (2011). RCP2. 6: Exploring the possibility to keep global mean temperature increase below 2 C. Climatic Change, 109(1–2), 95–116.

    Google Scholar 

  • Wang, Z.-X. (2015). A predictive analysis of clean energy consumption, economic growth and environmental regulation in China using an optimized grey dynamic model. Computational Economics, 46(3), 437–453.

    Google Scholar 

  • Williams, K., Percival, F., Merino, J., & Mooney, H. (1987). Estimation of tissue construction cost from heat of combustion and organic nitrogen content. Plant, Cell and Environment, 10(9), 725–734.

    Google Scholar 

  • Williams, R. (1995). Variants of a low \(\text{CO}_{2}\)-emitting energy supply system (LESS) for the world-prepared for the IPCC second assessment report working group IIa. Pacific Northwest Laboratories (p. 39).

  • Wolf, J., Bindraban, P., Luijten, J., & Vleeshouwers, L. (2003). Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agricultural Systems, 76(3), 841–861.

    Google Scholar 

  • Xie, G., Liu, Q., Duan, Z., & Zhang, B. (2015). Review on resource of non-food land suitable for energy plant production in China. Journal of China Agricultural University, 20(2), 1–10 (in Chinese).

  • Yamamoto, H., Fujino, J., & Yamaji, K. (2001). Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model. Biomass and Bioenergy, 21(3), 185–203.

    Google Scholar 

  • Yan, L., Zhang, L., Wang, S., & Hu, L. (2008). Potential yield of bioethanol from energy crops and their regional distribution in China. Transactions of the Chinese Society of Agricultural Engineering, 24(5), 213–216 (in Chinese).

  • Yue, T. X. (2010). Surface modeling: High Accuracy and high speed methods. Boca Raton: CRC Press.

    Google Scholar 

  • Yue, T. X., Fan, Z. M., & Liu, J. Y. (2005). Changes of major terrestrial ecosystems in China since 1960. Global and Planetary Change, 48(4), 287–302. doi:10.1016/j.gloplacha.2005.03.001.

    Article  Google Scholar 

  • Yue, T. X., Fan, Z. M., & Liu, J. Y. (2007). Scenarios of land cover in China. Global and Planetary Change, 55(4), 317–342. doi:10.1016/j.gloplacha.2006.10.002.

    Article  Google Scholar 

  • Yue, T. X., Fan, Z. M., Liu, J. Y., & Wei, B. X. (2006). Scenarios of major terrestrial ecosystems in China. Ecological Modelling, 199(3), 363–376. doi:10.1016/j.ecolmodel.2006.05.026.

    Article  Google Scholar 

  • Yue, T. X., Zhao, N., Ramsey, R. D., Wang, C. L., Fan, Z. M., Fa, C. C., et al. (2013a). Climate change trend in China, with improved accuracy. Climatic Change, 120, 137–151.

    Google Scholar 

  • Yue, T. X., Zhao, N., Yang, H., Song, Y. J., Du, Z. P., Fan, Z. M., et al. (2013b). A multi-grid method of high accuracy surface modeling and its validation. Transactions in GIS, 17(6), 943–952.

    Google Scholar 

  • Zhang, Q., Ma, J., Qiu, G., Li, L., Geng, S., Hasi, E., et al. (2012). Potential energy production from algae on marginal land in China. Bioresource Technology, 109, 252–260.

    Google Scholar 

  • Zhao, N., & Yue, T. X. (2014). A modification of HASM for interpolating precipitation in China. Theoretical and Applied Climatology, 116, 273–285.

    Google Scholar 

  • Zhou, X., Xiao, B., Ochieng, R. M., & Yang, J. (2009). Utilization of carbon-negative biofuels from low-input high-diversity grassland biomass for energy in China. Renewable and Sustainable Energy Reviews, 13(2), 479–485.

    Google Scholar 

  • Zhuang, D., Jiang, D., Liu, L., & Huang, Y. (2011). Assessment of bioenergy potential on marginal land in China. Renewable and Sustainable Energy Reviews, 15(2), 1050–1056.

    Google Scholar 

  • Zomer, R. J., Neufeldt, H., Xu, J., Ahrends, A., Bossio, D., Trabucco, A., et al. (2016). Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Scientific Reports, 6, 29987.

Download references

Acknowledgements

This research was supported by the National Key Research and Development Plan of China (Grant No. 2016YFA0602500), China National Natural Science Funds for Distinguished Young Scholar (Grant No. 71225005) and Key Projects in the National Science & Technology Pillar Program (Grant No. 2013BAC03B03). The data support was provided by the Resources and Environment Model and System Simulation Research Team in the Institute of Geographic Sciences and Natural Resources Research (REMSSRT/IGSNRR).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangzheng Deng.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Deng, X., Chu, X. et al. An Outlook on the Biomass Energy Development Out to 2100 in China. Comput Econ 54, 1359–1377 (2019). https://doi.org/10.1007/s10614-016-9644-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-016-9644-6

Keywords

Navigation