Skip to main content
Log in

Conditional Versus Unconditional Utility as Welfare Criterion: Two Examples

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

This paper provides two illustrative examples on how a choice of social welfare criterion (conditional vs. unconditional utility) can generate different welfare implications. The first example is based on the standard linear-quadratic permanent income model, and the other example uses a simple two-country DSGE model under autarky and under complete markets. When the conditional welfare criterion is used—with the social discount factor set at the private discount factor—we obtain the well-known results that the government should not intervene when there are no market imperfections and that complete markets generate risk sharing gains over autarky. In contrast, using an unconditional welfare criterion—which effectively implies that the social discount factor is set to unity—can generate unconventional welfare results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Notes

  1. Other examples of using unconditional welfare in evaluating policies include Clarida et al. (1999), Rotemberg and Woodford (1999), Erceg et al. (2000), Sutherland (2002), Kollmann (2002), and Kim and Henderson (2005).

  2. In an intertemporal general equilibrium model in which agents discount the future, a majority of papers have used the conditional utility as a welfare criterion.

  3. One criticism for using conditional welfare is that the results depend on the specific values for the initial states in an optimizing model where some constraints involve future expectations of endogenous variables. In such an environment of time inconsistency due to forward-looking constraints, Jensen and McCallum (2010) argue that “it is preferable for policy makers to commit to implementing the time-invariant policy that maximizes the unconditional expected value of their objective, rather than the timeless-perspective policy.” In contrast, the timeless perspective is based on the maximization of the discounted sum of the expected utility conditional on certain initial states. This paper deals with models without any forward-looking constraints and therefore is not subject to such criticism.

  4. See, for example, Damjanovic et al. (2008).

  5. See Sect. 2.6 in Ljungqvist and Sargent (2004).

  6. One can easily prove this by taking a derivative of this expression w.r.t. \( \varphi .\)

  7. As \(\beta \rightarrow 1\), the optimal positive subsidy derived from the unconditional welfare criterion would yield the level of conditional welfare at \(\left( -\frac{4}{3}\sigma _{Y}^{2}\right) \) while the policy with no subsidy would amount to the level of conditional welfare at \(\left( -\sigma _{Y}^{2}\right) \).

  8. Risk-sharing gains with different \(\gamma \) are calculated by endogenizing \( \sigma _{a}^{2}\) to maintain \(\sigma _{y}^{2}\) constant at 0.027\(^{2}\) under autarky. We use the following conventional parameter values for simulation: \( \beta =0.95,\alpha =0.8,\delta =0.1.\)

References

  • Barro, R. (2013). “Environmental protection, rare disasters, and discount rates,” NBER Working Paper No. 19258.

  • Clarida, R., Gali, J., & Gertler, M. (1999). The science of monetary policy: A new Keynesian perspective. Journal of Economic Literature, 37, 1661–1707.

    Article  Google Scholar 

  • Damjanovic, T., Damjanovic, V., & Nolan, C. (2008). Unconditionally optimal monetary policy. Journal of Monetary Economics, 55, 491–500.

    Article  Google Scholar 

  • Erceg, Christopher, Henderson, Dale, & Levin, Andrew. (2000). Optimal monetary policy with staggered wage and price contracts. Journal of Monetary Economics, 46, 281–313.

    Article  Google Scholar 

  • Goulder, L. H., & Williams III, R. C. (2012). “The choice of discount rate for climate change policy evaluations,” NBER Working Paper No. 18301.

  • Jensen, C., & McCallum, B. T. (2010). Optimal continuation versus timeless perspective in monetary policy. Journal of Money, Credit and Banking, 42, 1093–1107.

    Article  Google Scholar 

  • Kim, J., & Henderson, D. (2005). Inflation targeting and nominal income growth targeting: When and why are they suboptimal? Journal of Monetary Economics, 52, 1463–1495.

    Article  Google Scholar 

  • Kim, J., & Kim, S. H. (2003). Spurious welfare reversals in international business cycle models. Journal of International Economics, 60, 471–500.

    Article  Google Scholar 

  • King, R., & Wolman, A. (1999). What should the monetary authority do when prices are sticky? In J. B. Talyor (Ed.), Monetary policy rules. Chicago: University of Chicago Press.

    Google Scholar 

  • Kollmann, R. (2002). Monetary policy rules in the open economy: Effects on welfare and business cycles. Journal of Monetary Economics, 49, 989–1015.

    Article  Google Scholar 

  • Ljungqvist, L., & Sargent, T. (2004). Recursive macroeconomic theory. Cambridge, MA: MIT Press.

    Google Scholar 

  • Pyndick, R. S. (2013). “Climate change policy: What do the models tell us?” NBER Working Paper No. 19244.

  • Rotemberg, J., & Woodford, M. (1997). “An optimization-based econometric framework for the evaluation of monetary policy,” In B. Bernanke & J. Rotemberg, eds., NBER Macroeconomics Annual (Vol. 12, pp. 297–345). Cambridge, MA: MIT Press.

  • Rotemberg, J., & Woodford, M. (1999). Interest rate rules in an estimated sticky-price model. In J. B. Talyor (Ed.), Monetary policy rules. Chicago: University of Chicago Press.

    Google Scholar 

  • Sutherland, A. (2002). “A simple second-order solution method for dynamic general equilibrium models,” CEPR Discussion Paper No. 3554.

  • Taylor, J. B. (1979). Estimation and control of a macroeconomic model with rational expectations. Econometrica, 47, 1267–1286.

    Article  Google Scholar 

  • Woodford, M. (2002). “Inflation stabilization and welfare,” Contributions to macroeconomics (Vol. 2, Article 1).

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea Grant funded by the Korean Government (NRF-2014S1A5B8060964).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghyun Kim.

Appendix

Appendix

1.1 Autarky

We assume that log productivity shock follows an i.i.d. process with mean zero and variance \(\sigma _{a}^{2}\), and the lower case represents the log deviation from the deterministic steady state (i.e. \(x=\log X-\log \bar{X}\) ). From the Euler equation (21) and the budget constraint (20), we can calculate the second-order solution as

$$\begin{aligned} k_{t+1}= & {} \epsilon _{kk}k_{t}+\epsilon _{ka}a_{t}+\frac{\epsilon _{kkk}}{2} \left( k_{t}\right) ^{2}+\epsilon _{kka}k_{t}a_{t}+\frac{\epsilon _{kaa}}{2} \left( a_{t}\right) ^{2}+\frac{\epsilon _{k\sigma \sigma }}{2}\sigma _{a}^{2}, \\ c_{t}= & {} \epsilon _{ck}k_{t+1}+\frac{\epsilon _{ckk}}{2}\left( k_{t+1}\right) ^{2}+\frac{\epsilon _{c\sigma \sigma }}{2}\sigma _{a}^{2}, \end{aligned}$$

where the first-order coefficients are

$$\begin{aligned} \epsilon _{kk}= & {} \frac{1}{2}\left( 1+\chi -\sqrt{(1+\chi )^{2}-4/\beta } \right) , \\ \epsilon _{ka}= & {} \frac{\beta \delta }{s}\epsilon _{kk}, \\ \epsilon _{ck}= & {} \frac{1-\beta \epsilon _{kk}}{(1-s)\epsilon _{ka}}, \end{aligned}$$

and

$$\begin{aligned} \Delta= & {} 1-\beta +\beta \delta , \\ s= & {} \frac{\alpha \beta \delta }{\Delta }, \\ \chi= & {} \frac{\alpha \gamma +\left( 1-\alpha \right) (1-s)\Delta ^{2}}{ \alpha \beta \gamma }. \end{aligned}$$

The second-order coefficients are

$$\begin{aligned} \epsilon _{kkk}= & {} \frac{\gamma \left( 1-\epsilon _{kk}^{2}\right) \left[ \alpha ^{2}+\frac{s\left( 1-\delta \right) }{\delta }-\left[ \left( 1-s\right) \epsilon _{ck}^{2}+\frac{s}{\delta }\right] \epsilon _{kk}^{2} \right] +\Delta \left( 1-\Delta \right) \left( 1-\alpha \right) ^{2}\left( 1-s\right) \epsilon _{kk}^{2}}{\gamma \left( 1-s\right) \epsilon _{ck}+\gamma \left( 1-\epsilon _{kk}^{2}\right) \frac{s}{\delta }}, \\ \epsilon _{ckk}= & {} \frac{-\Delta \left( 1-\Delta \right) \left( 1-\alpha \right) ^{2}\left[ \left( 1-s\right) \epsilon _{ck}+\frac{s}{\delta }\right] +\gamma \epsilon _{ck}\left[ \alpha ^{2}+\frac{s\left( 1-\delta \right) }{ \delta }-\left[ \left( 1-s\right) \epsilon _{ck}^{2}+\frac{s}{\delta }\right] \epsilon _{kk}^{2}\right] }{\gamma \left( 1-s\right) \epsilon _{ck}+\gamma \left( 1-\epsilon _{kk}^{2}\right) \frac{s}{\delta }}, \end{aligned}$$
$$\begin{aligned} \epsilon _{kka}= & {} \left[ \left( 1-s\right) \epsilon _{ck}+\frac{s}{\delta } \right] ^{-1}\left[ \alpha -\left[ \left( 1-s\right) \left( \epsilon _{ckk}+\epsilon _{ck}^{2}\right) +\frac{s}{\delta }\right] \epsilon _{kk}\epsilon _{ka}\right] , \\ \epsilon _{kaa}= & {} \left[ \left( 1-s\right) \epsilon _{ck}+\frac{s}{\delta } \right] ^{-1}\left[ 1-\left[ \left( 1-s\right) \left( \epsilon _{ckk}+\epsilon _{ck}^{2}\right) +\frac{s}{\delta }\right] \epsilon _{ka}^{2} \right] , \\ \epsilon _{k\sigma \sigma }= & {} -\epsilon _{kaa}+\left( \gamma \epsilon _{ck}\right) ^{-1}\left[ -\gamma \epsilon _{ckk}\epsilon _{ka}^{2}+\Delta \left( 1-\Delta \right) +\left( \Delta -\gamma \epsilon _{ck}\epsilon _{ka}\right) ^{2}\right] , \\ \epsilon _{c\sigma \sigma }= & {} -\left[ \epsilon _{ck}+\frac{s}{\delta \left( 1-s\right) }\right] \epsilon _{k\sigma \sigma }. \end{aligned}$$

Taking expectations of these two second-order solutions generate the mean and variance of \(k_{t}\) and \(c_{t}.\)

$$\begin{aligned} Var\left[ k_{t+1}\right]= & {} \epsilon _{kk}^{2}Var\left[ k_{t}\right] +\epsilon _{ka}^{2}\sigma _{a}^{2}, \\ Var\left[ c_{t}\right]= & {} \epsilon _{ck}^{2}Var\left[ k_{t+1}\right] , \\ E\left[ k_{t+1}\right]= & {} \epsilon _{kk}E\left[ k_{t}\right] +\frac{\epsilon _{kkk}}{2}Var\left[ k_{t}\right] +\frac{\epsilon _{kaa}}{2}\sigma _{a}^{2}+ \frac{\epsilon _{k\sigma \sigma }}{2}\sigma _{a}^{2}, \\ E\left[ c_{t}\right]= & {} \epsilon _{ck}E\left[ k_{t+1}\right] +\frac{\epsilon _{ckk}}{2}Var\left[ k_{t+1}\right] +\frac{\epsilon _{c\sigma \sigma }}{2} \sigma _{a}^{2}. \end{aligned}$$

Unconditional mean and variance of consumption become

$$\begin{aligned}&\displaystyle \text {E}\left[ c_{t}^{U}\right] =\left[ \frac{\epsilon _{ck}}{1-\epsilon _{kk}}\left( \frac{\epsilon _{ka}^{2}}{1-\epsilon _{kk}^{2}}\epsilon _{kkk}+\epsilon _{kaa}+\epsilon _{k\sigma \sigma }\right) +\epsilon _{ckk} \frac{\epsilon _{ka}^{2}}{1-\epsilon _{kk}^{2}}+\epsilon _{c\sigma \sigma } \right] \frac{\sigma _{a}^{2}}{2}, \\&\displaystyle \text {Var}\left[ c_{t}^{U}\right] =\epsilon _{ck}^{2}\frac{\epsilon _{ka}^{2}\sigma _{a}^{2}}{1-\epsilon _{kk}^{2}}, \end{aligned}$$

where superscript U denotes unconditional. Unconditional welfare and the certainty equivalent consumption can be calculated as follows

$$\begin{aligned} E\left[ U_{t}^{U}\right]= & {} E\left[ c_{t}^{U}\right] +\frac{1-\gamma }{2}Var \left[ c_{t}^{U}\right] , \\ c_{t}^{U,CE}= & {} \left[ E\left[ U_{t}^{U}\right] \left( 1-\gamma \right) +1 \right] ^{\frac{1}{1-\gamma }}. \end{aligned}$$

1.2 Complete Markets Economy

Solution for the complete markets model implies that consumption should be equal across countries: \(C_{1s}=C_{2s}\) for all \(s\ge t\). Also, due to the independence assumption of the shocks, the social planner allocates the same amount of capital: \(K_{1s}=K_{2s}\) for all \(s\ge t+1\).

Using the information that the solution is symmetric between the two countries, we compute the second-order solution as follows:

$$\begin{aligned} k_{1,t+1}= & {} 2\eta _{kk}k_{1t}+\eta _{ka}\left( a_{1t}+a_{2t}\right) +\frac{ \eta _{k\sigma \sigma }}{2}\sigma _{a}^{2} \\&+\frac{1}{2}\left[ \begin{array}{c} k_{1t} \\ a_{1t} \\ a_{2t} \end{array} \right] ^{\prime }\left[ \begin{array}{ccc} 4\eta _{kkk} &{} 2\eta _{kka} &{} 2\eta _{kka} \\ 2\eta _{kka} &{} \eta _{kaa} &{} \eta _{kaa^{*}} \\ 2\eta _{kka} &{} \eta _{kaa^{*}} &{} \eta _{kaa} \end{array} \right] \left[ \begin{array}{c} k_{1t} \\ a_{1t} \\ a_{2t} \end{array} \right] , \\ c_{t}= & {} 2\eta _{ck}k_{1,t+1}+2\eta _{ckk}k_{1,t+1}^{2}+\frac{\eta _{c\sigma \sigma }}{2}\sigma _{a}^{2}, \end{aligned}$$

where the coefficients \(\eta ^{\prime }\)s are

$$\begin{aligned} \eta _{ckk}= & {} \frac{\epsilon _{ckk}}{4},\quad \eta _{kkk}=\frac{\epsilon _{kkk}}{4 },\quad \eta _{kka}=\frac{\epsilon _{kka}}{4}, \\ \eta _{kaa}= & {} \frac{1}{4}\left( \epsilon _{kaa}+\epsilon _{ka}\right) ,\quad \eta _{kaa^{*}}=\frac{1}{4}\left( \epsilon _{kaa}-\epsilon _{ka}\right) , \\ \eta _{k\sigma \sigma }= & {} \frac{1}{2}\left( \epsilon _{k\sigma \sigma }+ \frac{\Delta -\gamma \epsilon _{ck}\epsilon _{ka}}{\gamma \epsilon _{ck}} \right) , \\ \eta _{c\sigma \sigma }= & {} -\left( \epsilon _{ck}+\frac{s}{\left( 1-s\right) \delta }\right) \left( \epsilon _{k\sigma \sigma }+\frac{\Delta -\gamma \epsilon _{ck}\epsilon _{ka}}{\gamma \epsilon _{ck}}\right) . \end{aligned}$$

Mean and variance of \(k_{t}\) and \(c_{t}\) follow:

$$\begin{aligned} Var\left[ k_{t+1}\right]= & {} 4\eta _{kk}^{2}Var\left[ k_{t}\right] +2\eta _{ka}^{2}\sigma _{a}^{2}, \\ Var\left[ c_{t}\right]= & {} 4\eta _{ck}^{2}Var\left[ k_{t+1}\right] , \\ E\left[ k_{t+1}\right]= & {} 2\eta _{kk}E\left[ k_{t}\right] +2\eta _{kkk}Var \left[ k_{t}\right] +\eta _{kaa}\sigma _{a}^{2}+\frac{\eta _{k\sigma \sigma } }{2}\sigma _{a}^{2}, \\ E\left[ c_{t}\right]= & {} 2\eta _{ck}E\left[ k_{t+1}\right] +2\eta _{ckk}Var \left[ k_{t+1}\right] +\frac{\eta _{c\sigma \sigma }}{2}\sigma _{a}^{2}. \end{aligned}$$

Unconditional mean and variance of consumption become

$$\begin{aligned}&\displaystyle \text {E}\left[ c_{t}^{U}\right] =\left[ \frac{\epsilon _{ck}}{1-\epsilon _{kk}}\left( \frac{2\epsilon _{ka}^{2}}{1-\epsilon _{kk}^{2}}\eta _{kkk}+2\eta _{kaa}+\eta _{k\sigma \sigma }\right) +\eta _{ckk}\frac{ 2\epsilon _{ka}^{2}}{1-\epsilon _{kk}^{2}}+\eta _{c\sigma \sigma }\right] \frac{\sigma _{a}^{2}}{2}, \\&\displaystyle \text {Var}\left[ c_{t}^{U}\right] =4\eta _{ck}^{2}\frac{2\eta _{ka}^{2}\sigma _{a}^{2}}{1-4\eta _{kk}^{2}}. \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Kim, S. Conditional Versus Unconditional Utility as Welfare Criterion: Two Examples. Comput Econ 51, 719–730 (2018). https://doi.org/10.1007/s10614-016-9635-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-016-9635-7

Keywords

JEL Classification

Navigation