Skip to main content
Log in

Volatility Analysis of Financial Agent-Based Market Dynamics from Stochastic Contact System

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

A financial agent-based time series model is developed and investigated by the stochastic contact systems. Multicolor contact system, as one of statistical physics systems, is applied to model a random stock price process for investigating the fluctuation dynamics of financial market. The interaction and dispersal of different types of investment attitudes in a financial market is imitated by viruses spreading in a multicolor contact system, and we suppose that the investment attitudes of market participants contribute to the volatilities of financial time series. We introduce a volatility duration analysis to detect the duration and intensity relationship of time series for both SSECI and the financial model. Furthermore, the empirical research is also presented to study the nonlinear behaviors of returns for the actual data and the simulation data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bannerjee, A. (1992). A simple model of herd behavior. Quarterly Journal of Economics, 107, 797–818.

    Article  Google Scholar 

  • Bogachev, M. I., & Bunde, A. (2009). Improved risk estimation in multifractal records: Application to the value at risk in finance. Physical Review E, 80, 026131.

    Article  Google Scholar 

  • Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307–327.

    Article  Google Scholar 

  • Bouchaud, J. P., & Potters, M. (2000). Theory of financial risk. Cambridge: Cambridge University Press.

    Google Scholar 

  • Chakraborti, A., Toke, I. M., Patriarca, M., & Abergel, F. (2011). Econophysics review: II. Agent-based models. Quantitative Finance, 11, 1013–1041.

    Article  Google Scholar 

  • Chen, M. F. (1992). From Markov chains to non-equilibrium particle systems. Singapore: World Scientific.

    Book  Google Scholar 

  • Chow, V. T. (1964). Handbook of applied hydrology. New York, NY: McGraw-Hill.

    Google Scholar 

  • Cont, R. (2001). Empirical properties of asset returns: Stylized facts and statistical issues. Quantitative finance, 1, 223–236.

    Article  Google Scholar 

  • Cont, R., & Bouchaud, J. P. (2000). Herd behaviors and aggregate fluctuations in financial markets. Macroeconomic Dynamics, 4, 170–197.

    Article  Google Scholar 

  • Cox, J. T., & Schinazi, R. B. (2009). Survival and coexistence for a multitype contact process. The Annals of Probability, 37, 853–876.

    Article  Google Scholar 

  • Divakaran, U., & Dutta, A. (2007). Long-range connections, quantum magnets and dilute contact processes. Physica A, 384, 39–43.

    Article  Google Scholar 

  • Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of variance of United Kingdom inflation. Econometrica, 50, 987–1007.

    Article  Google Scholar 

  • Fang, W., & Wang, J. (2012). Statistical properties and multifractal behaviors of market returns by ising dynamic systems. International Journal of Modern Physics C, 23, 1250023.

    Article  Google Scholar 

  • Gabaix, X., Gopikrishnan, P., Plerou, V., & Stanley, H. E. (2003). A theory of power-law distributions in financial market fluctuations. Nature, 423, 267–270.

    Article  Google Scholar 

  • Gaylord, R., & Wellin, P. (1995). Computer simulations with mathematica: Explorations in the physical biological and social science. NewYork: Springer.

    Google Scholar 

  • Glosten, L., Jaganathan, R., & Runkle, D. E. (1993). On the relation between the expected value and the volatility of the nominal excess return on stocks. Journal of Finance, 48, 1779–1801.

    Article  Google Scholar 

  • Ilinski, K. (2001). Physics of finance: Gauge modeling in non-equilibrium pricing. New York: Wiley.

    Google Scholar 

  • Krone, S. M. (1999). The two-stage contact process. The Annals of Applied Probability, 9, 331–351.

    Article  Google Scholar 

  • Lamberton, D., & Lapeyre, B. (2000). Introduction to stochastic calculus applied to finance. London: Chapman and Hall/CRC.

    Google Scholar 

  • Li, W., Wang, S. S., & Rhee, G. (2015). Differences in herding: Individual vs. institutional investors, Asian finance association 2015 conference paper.

  • Liao, Z., & Wang, J. (2010). Forecasting model of global stock index by stochastic time effective neural network. Expert Systems with Applications, 37, 834–841.

    Article  Google Scholar 

  • Liggett, T. M. (1985). Interacting Particle Systems. New York: Springer.

    Book  Google Scholar 

  • Liggett, T. M. (1999). Stochastic interacting systems: Contact, voter and exclusion processes. New York: Springer.

    Book  Google Scholar 

  • Liu, X. F., & Wang, J. (1994). A sufficient condition for non-coexistence of one dimensional multicolor contact processes. Acta Mathematicae Applicatae Sinica, 10, 169–176.

    Article  Google Scholar 

  • Lo, A. W. (1991). Long-term memory in stock market prices. Econometrica, 59, 1279–1314.

    Article  Google Scholar 

  • Lux, T. (2008). Financial power laws: Empirical evidence, models and mechanisms. Cambridge: Cambridge University Press.

    Google Scholar 

  • Lux, T., & Marchesi, M. (1990). Scaling and criticality in a stochastic multi-agent model of a financial market. Nature, 397, 498–500.

    Article  Google Scholar 

  • Mandelbrot, B. B. (1963). The variation of certain speculative prices. Journal of Business, 36, 394–419.

    Article  Google Scholar 

  • Mantegna, R. N., & Stanley, E. (1999). An introduction to econophysics: Correlations and complexity in finance. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Mills, T. C. (1999). The econometric modeling of financial time series (2nd ed.). Cambridge: Cambridge University Press.

    Book  Google Scholar 

  • Neuhauser, C. (1992). Ergodic theorems for the multitype contact process. Probability Theory and Related Fields, 91, 467–506.

    Article  Google Scholar 

  • Niu, H. L., & Wang, J. (2013). Volatility clustering and long memory of financial time series and financial price model. Digital Signal Processing, 23, 489–498.

    Article  Google Scholar 

  • Plerou, V. (1999). Scaling of the distribution of fluctuations of individual companies. Physical Review E, 60, 6519–6529.

    Article  Google Scholar 

  • Plerou, V., Rosenow, B., Amaral, L. A. N., & Stanley, H. E. (2000). Econophysics: Financial time series from a statistical physics point of view. Physica A, 279, 443–456.

    Article  Google Scholar 

  • Rabemananjara, R., & Zakoian, J. M. (1993). Threshold arch models and asymmetries in volatility. Journal of Applied Econometrics, 8, 31–49.

    Article  Google Scholar 

  • Ren, F., & Zhou, W. X. (2010). Recurrence interval analysis of high-frequency financial returns and its application to risk estimation. New Journal of Physics, 12, 075030.

    Article  Google Scholar 

  • Ross, S. M. (1999). An introduction to mathematical finance. Cambridge: Cambridge University Press.

    Google Scholar 

  • Samanidou, E., Zschischang, E., Stauffer, D., & Lux, T. (2007). Agent-based models of financial markets. Reports on Progress in Physics, 70, 409–450.

    Article  Google Scholar 

  • Stauffer, D., & Penna, T. (1998). Crossover in the Cont-Bouchaud percolation model for market fluctuations. Physica A, 256, 284–290.

    Article  Google Scholar 

  • Wang, J. (2007). Stochastic process and its application in finance. Beijing: Tsinghua University Press and Beijing Jiaotong University Press.

    Google Scholar 

  • Wang, F., & Wang, J. (2012). Statistical analysis and forecasting of return interval for SSE and model by lattice percolation system and neural network. Computers & Industrial Engineering, 62, 198–205.

    Article  Google Scholar 

  • Wang, J., Wang, Q. Y., & Shao, J. G. (2010). Fluctuations of stock price model by statistical physics systems. Mathematical and Computer Modeling, 51, 431–440.

    Article  Google Scholar 

  • Wang, T. S., Wang, J., Zhang, J. H., & Fang, W. (2011). Voter interacting systems applied to Chinese stock markets. Mathematics and Computers in Simulation, 81, 2492–2506.

    Article  Google Scholar 

  • Wang, F., Yamasaki, K., Havlin, S., & Stanley, H. E. (2006). Scaling and memory of intraday volatility return intervals in stock markets. Physical Review E, 73, 026117.

    Article  Google Scholar 

  • Xiao, D., & Wang, J. (2012). Modeling stock price dynamics by continuum percolation system and a relevant complex systems analysis. Physica A, 391, 4827–4838.

    Article  Google Scholar 

  • Zhang, J. H., & Wang, J. (2010). Modeling and simulation of the market fluctuations by the finite range contact systems. Simulation Modelling Practice and Theory, 18, 910–925.

    Article  Google Scholar 

Download references

Acknowledgments

The authors were supported in part by National Natural Science Foundation of China Grant Nos. 71271026 and 10971010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, D., Wang, J. & Niu, H. Volatility Analysis of Financial Agent-Based Market Dynamics from Stochastic Contact System. Comput Econ 48, 607–625 (2016). https://doi.org/10.1007/s10614-015-9539-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-015-9539-y

Keywords

Navigation