Skip to main content
Log in

The Stability Analysis of Predictor–Corrector Method in Solving American Option Pricing Model

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

In this paper, a new technique is investigated to speed up the order of accuracy for American put option pricing under the Black–Scholes (BS) model. First, we introduce the mathematical modeling of American put option, which leads to a free boundary problem. Then the free boundary is removed by adding a small and continuous penalty term to the BS model that cause American put option problem to be solvable on a fixed domain. In continuation we construct the method of lines (MOL) in space and reach a non-linear problem and we show that the proposed MOL is more stable than the other kinds. To deal with the non-linear problem, an algorithm is used based on the predictor–corrector method which corresponds to two parameters, \(\theta \) and \(\phi \). These parameters are chosen optimally using a rational approximation to determine the order of time convergence. Finally in numerical results a second order convergence is shown in both space and time variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amin, K., & Khanna, A. (1994). Convergence of American option values from discrete to continuous-time financial models. Mathematical Finance, 4, 289–304.

  • Barraquand, J., & Pudet, T. (1994). Pricing of American path-dependent contingent claims. Paris: Digital Research Laboratory.

    Google Scholar 

  • Black, F., & Scholes, M. S. (1973). THE pricing of options and corporate liabilities. The Journal of Political Economy, 81, 637654.

    Article  Google Scholar 

  • Brayton, R. K., Gustavson, F. G., & Hachtel, G. D. (1972). A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas. Proceedings of the IEEE, 60(1), 98–108.

    Article  Google Scholar 

  • Brennan, M., & Schwartz, E. (1977). The valuation of American put options. The Journal of Finance, 32, 449–462.

    Article  Google Scholar 

  • Broadie, M., & Detemple, J. (1996). American option valuation: New bounds, approximations, and a comparison of existing methods. Review of Financial Studies, 9(4), 121–150.

    Article  Google Scholar 

  • Butcher, J. C. (2008). Numerical methods for ordinary differential equations (2nd ed.). Chichester: Wiley.

    Book  Google Scholar 

  • Duffy, D. J. (2006). Finite difference methods in financial engineering (A partial differential equation approach). England: Wiley.

    Book  Google Scholar 

  • Fitzsimons, C. J., Liu, F., & Miller, J. H. (1992). A second-order L-stable time discretisation of the semiconductor device equation. Journal of Computational and Applied Mathematics, 42, 175–186.

    Article  Google Scholar 

  • Hull, J. C. (1997). Options, futures and other derivatives. Boston: Prentice Hall.

    Google Scholar 

  • Khaliq, A. Q. M., Voss, D. A., & Kazmi, S. H. K. (2006). A linearly implicit predictorcorrector scheme for pricing American options using apenalty method approach. Journal of Banking and Finance, 30, 459–502.

    Article  Google Scholar 

  • Kwok, Y. K. (1998). Mathematical models of financial derivatives. Heidelberg: Springer.

    Google Scholar 

  • Kwok, Y. K. (2009). mathematical models of financial derivatives. Second Edition. Singapore:Springer Finance ISSN.

  • Lambert, J. D. (1978). Complctational methods in ordinav differential equations. New York: Wiley.

    Google Scholar 

  • Meng, Wu, Nanjing, H., & Huiqiang, M. (2014). American option pricing with time-varying parameters. Computational Economics, 241, 439–450.

    Google Scholar 

  • Merton, R. C. (1973). The theory of rational option pricing. Bell Journal of Economics and Management Science, 4, 141–183.

    Article  Google Scholar 

  • Mock, M. S. (1983). Analysis of mathematica1 models of semiconductor. Dublin: Derices Boole.

    Google Scholar 

  • Myneni, R. (1992). The pricing of the American option. Annals of Applied Probability, 2(1), 1–23.

    Article  Google Scholar 

  • Neftci, S. N. (2000). An introduction to the mathematics of financial derivatives. London: Academic Press.

    Google Scholar 

  • Nielsen, B., Skavhaug, O., & Tveito, A. (2002). Penalty and front-fixing methods for the numerical solution of American option problems. The Journal of Computational Finance, 5, 67–98.

    Google Scholar 

  • Ross, S. H. (1999). An introduction to mathematical finance. Cambridge: Cambridge University Press.

    Google Scholar 

  • San-Lin, C. (2000). American option valuation under stochastic interest rates. Computational Economics, 3, 283–307.

    Google Scholar 

  • Song, D., & Yang, Z. (2014). Utility-based pricing, timing and hedging of an American call option under an incomplete market with partial information. Computational Economics, 44, 1–26.

    Article  Google Scholar 

  • Voss, D. A., & Casper, M. J. (1989). Efficient split linear multistep methods for stiff ODEs. SIAM Journal on Scientific Computing, 10, 990–999.

    Article  Google Scholar 

  • Voss, D. A., & Khaliq, A. Q. M. (1999). A linearly implicit predictorcorrector method for reaction diffusion equations. Journal of Computational and Applied Mathematics, 38, 207216.

    Google Scholar 

  • Wilmott, P., Dewynne, J., & Howison, S. (1993). Option pricing, mathematical models and computation. Oxford: oxford Financial Press.

    Google Scholar 

  • Wilmott, P. (1998). The theory and practice of financial engineering. New York: Wiley.

    Google Scholar 

  • Yonggeng, G., Jiwu, S., Xiaotie, D., & Weimin, Z. (2002). A new numerical method on American option pricing. Computational Economics, 45, 181–188.

    Google Scholar 

  • Zvan, R., Forsyth, P. A., & Vetzal, K. R. (1998). Penalty methods for American options with stochastic volatility. Journal of Computational and Applied Mathematics, 91, 199–218.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank anonymous reviewers for their useful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Shahmorad.

Appendices

Appendix 1

1.1 Solving an Ordinary Differential Equation by Penalty Method

We consider a simple ordinary differential equation

$$\begin{aligned} \left\{ \begin{array}{ccccccc} &{}u'=-u,\\ &{}u(0)=2, \end{array}\right. \end{aligned}$$
(34)

with the additional constraint that

$$\begin{aligned} u(t)\ge 1. \end{aligned}$$
(35)

The solution to this problem can be computed analytically and is given by

$$\begin{aligned} u(t) =\left\{ \begin{array}{lllllll} 2e^{-t}&{}\quad \text{ for } \;\;t\le ln2,\\ 1&{}\quad \text{ for } \;\;t > ln2. \end{array}\right. \end{aligned}$$
(36)

Suppose, however, that we want to solve the initial-value problem (34)–(35) numerically. Then we would have to check, for each time step, whether the constraint is satisfied or not. Let \(u_n\) be a numerical approximation of \(u(t_n)\) where \(t_n=n\varDelta t\) , and \(\varDelta t >0\) is the time step. We compute a numerical solution of the initial-value problem (34)–(35) using an explicit finite-difference scheme:

$$\begin{aligned} u_{n+1}=\max ((1-\varDelta t)u_n,1),\;\;n\ge 0, \end{aligned}$$
(37)

where \(u_0=2\). This corresponds to a Brennan-Schwartz type of algorithm for pricing American put options Brennan and Schwartz (1977).

An equation which approximates this property fairly well can be derived by adding an extra term to equation (35). Consider the initial-value problem

$$\begin{aligned} \left\{ \begin{array}{lllllll} &{}v'=-v+\frac{\epsilon }{v+\epsilon -1},\\ &{}v(0)=2, \end{array}\right. \end{aligned}$$
(38)

where \(\epsilon >0\) is a small parameter. Note that, initially, \(v = 2\), so the penalty term is

$$\begin{aligned} \frac{\epsilon }{v+\epsilon -1}. \end{aligned}$$

For more detail see Nielsen et al. (2002).

Now we use predictor–corrector method developed in Sect. 4 for solving (38). For simplicity, we assume a uniform time step size \(\varDelta t\) and \(T=1+\varDelta t\theta \), then for the corrector

$$\begin{aligned} Tv_{n+1}=\left( 1-\frac{\varDelta t}{2}\right) v_n+\frac{\varDelta t}{2}\frac{\epsilon }{v_n+\epsilon -1}+\varDelta t(\theta +\phi )\frac{\epsilon }{\widehat{v}_{n+1}+\epsilon -1}, \end{aligned}$$
(39)

the predicted solution \(\widehat{v}^{n+1}\) is given by

$$\begin{aligned} T\widehat{v}_{n+1}=(1-\varDelta t(1-\theta ))v_n+\varDelta t\frac{\epsilon }{v_n+\epsilon -1}. \end{aligned}$$
(40)

Table 2, show the maximum absolute error:

$$\begin{aligned} Error=\max _{n}\mid u(t_n) -v_n\mid , \end{aligned}$$

where \(u(t_n)\) and \(v_n\) are the exact and approximate solution of Eq. (34), respectively.

Table 2 Error of penalty method with \(\varDelta t=\frac{\epsilon }{1+\epsilon }\)

Appendix 2

1.1 Penalty Method for American Put Option Nielsen et al. (2002)

In this section we derive an implicit and a semi-implicit scheme. For both schemes we assume that

$$\begin{aligned} C > rE. \end{aligned}$$
(41)

Under this mild assumption it turns out that the implicit scheme is stable, whereas the semi-implicit scheme is stable if the additional condition (8) (see Sect. 3) is satisfied.

Using the notation introduced above, we consider forward FD for \(\frac{\partial V}{\partial S}\) and obtain the following scheme:

$$\begin{aligned}&\frac{V^{n+1}_j-V^n_j}{\varDelta t} + \frac{1}{2}\sigma ^2 S^2_j\frac{V^n_{j+1}-2V^n_j+V^n_{j-1}}{(\varDelta S)^2}+r S_j \frac{V^n_{j+1}-V^n_j}{\varDelta S}\nonumber \\&\qquad -\,rV^n_j+\frac{\epsilon C}{V^{n+\frac{1}{2}}_j+\epsilon -q_j}=0. \end{aligned}$$
(42)

Here, we put \(V^{n+\frac{1}{2} }_j= V^n_j\) in the fully implicit scheme and \( V^{n+\frac{1}{2}}_j = V^{n+1}_j \) in the semi-implicit scheme. The scheme (42) can be rearranged as

$$\begin{aligned}&\left( 1+r\varDelta t+\frac{\varDelta t}{(\varDelta S)^2 }S^2_j\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_j\right) V^n_j=V^{n+1}_j\nonumber \\&\quad +\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_j\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_j\right) V^n_{j+1}+\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_j\sigma ^2\right) V^n_{j-1}\nonumber \\&\quad +\frac{\epsilon \varDelta tC}{V^{n+\frac{1}{2}}_j+\epsilon -q_j}. \end{aligned}$$
(43)

Our aim is to show that

$$\begin{aligned} V^n_j \ge \max (q_j,0), \forall \; j,n. \end{aligned}$$
(44)

We do this in two steps; first, we show that

$$\begin{aligned} V^n_j \ge q_j \forall j, \end{aligned}$$
(45)

and next that

$$\begin{aligned} V^n_j \ge 0. \end{aligned}$$
(46)

In order to prove (45), we introduce

$$\begin{aligned} u^n_j=V^n_j-q_j. \end{aligned}$$
(47)

By substituting (47) in (43) and that \(q_j=E-S_j\), we have

$$\begin{aligned}&\left( 1+r\varDelta t+\frac{\varDelta t}{(\varDelta S)^2 }S^2_j\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_j\right) u^n_j=u^{n+1}_j\nonumber \\&\quad +\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_j\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_j\right) u^n_{j+1} +\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_j\sigma ^2\right) u^n_{j-1}\nonumber \\&\quad +\frac{\epsilon \varDelta tC}{u^{n+\frac{1}{2}}_j+\epsilon }-r\varDelta t(E-S_j), \end{aligned}$$
(48)

where \(u^{n+\frac{1}{2}}_j = u^n_j \) in the fully implicit case and \(u^{n+\frac{1}{2}}_j = u^{n+1}_j \) in the semiimplicit case. Define

$$\begin{aligned} u^n=\min _j u^n_j, \end{aligned}$$
(49)

and let \(k\) be an index such that

$$\begin{aligned} u^n_k=u^n. \end{aligned}$$
(50)

For \( j = k,\) it follows from (48) that

$$\begin{aligned}&\left( 1+r\varDelta t+\frac{\varDelta t}{(\varDelta S)^2 }S^2_k\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_k\right) u^n \ge u^{n+1}_k\nonumber \\&\quad +\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_k\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_k\right) u^n +\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_k\sigma ^2\right) u^n\nonumber \\&\quad +\frac{\epsilon \varDelta tC}{u^{n+\frac{1}{2}}_k+\epsilon }-r\varDelta tE, \end{aligned}$$
(51)

or

$$\begin{aligned} (1+r\varDelta t)u^n \ge u^{n+1}_k+\frac{\epsilon \varDelta t C }{u^{n+\frac{1}{2}}+\epsilon }-r \varDelta tE. \end{aligned}$$
(52)

Let us now consider the fully implicit case. Here (52) takes the form

$$\begin{aligned} (1+r\varDelta t)u^n-\frac{\epsilon \varDelta t C }{u^n+\epsilon }+r \varDelta tE\ge u^{n+1}_k\ge u^{n+1}. \end{aligned}$$
(53)

If we assume that

$$\begin{aligned} u^{n+1} \ge 0, \end{aligned}$$
(54)

then we have

$$\begin{aligned} F(u^n)\ge 0, \end{aligned}$$
(55)

where

$$\begin{aligned} F(x)=(1+r\varDelta t)x-\frac{\epsilon \varDelta t C }{x+\epsilon }+r \varDelta tE. \end{aligned}$$
(56)

Since

$$\begin{aligned} F(0)=\varDelta t(rE-C)\le 0, \end{aligned}$$
(57)

(see (41)), and

$$\begin{aligned} F'(x)=1+r\varDelta t+\frac{\epsilon \varDelta t C }{(x+\epsilon )^2} >0, \end{aligned}$$
(58)

it follows from (55) that

$$\begin{aligned} u^n\ge 0. \end{aligned}$$
(59)

Consequently, by induction on \(n\), it follows from (47) that

$$\begin{aligned} V^n_j\ge q_j, \forall j,\quad n=N+1, N,\ldots ,0. \end{aligned}$$
(60)

Next we consider the semi-implicit scheme and we assume that (8) holds. It follows from (52) that

$$\begin{aligned} (1+r \varDelta t)u^n \ge \frac{u^{n+1}_k(u^{n+1}_k+\epsilon )+\epsilon \varDelta tC-r\varDelta tE(u^{n+1}_k+\epsilon )}{u^{n+1}_k+\epsilon }, \end{aligned}$$
(61)

we assume that \(u^{n+1}\ge 0\), and thus \(u^{n+1}_k \ge 0\).

Let

$$\begin{aligned} G(x)=x(x+\epsilon )+\epsilon \varDelta tC-r\varDelta tE(x+\epsilon ), \end{aligned}$$
(62)

then

$$\begin{aligned} G(0)=\varDelta t\epsilon (C-rE) \ge 0, \end{aligned}$$
(63)

(see (41)), and

$$\begin{aligned} G'(x)=2x+\epsilon -r\varDelta tE, \end{aligned}$$
(64)

so \(G'(x) \ge 0 \) for \(x \ge 0 \) provided that (8) holds. Hence, we have

$$\begin{aligned} u^n_j \ge 0, \end{aligned}$$
(65)

and thus by (47)

$$\begin{aligned} V^n_j \ge q_j,\forall j, \quad n = N + 1, N, N - 1,\ldots , 0. \end{aligned}$$
(66)

Next we consider (46), i.e, we want to show that

$$\begin{aligned} V^n_j \ge 0. \end{aligned}$$
(67)

As above, we define

$$\begin{aligned} V^n= \min _jV^n_j, \end{aligned}$$
(68)

and let \(k\) be an index such that

$$\begin{aligned} V^n_k= V^n. \end{aligned}$$
(69)

It follows from (43) that

$$\begin{aligned}&\left( 1+r\varDelta t+\frac{\varDelta t}{(\varDelta S)^2 }S^2_k\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_k\right) V^n \ge V^{n+1}_k\nonumber \\&\quad +\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_k\sigma ^2+r\frac{\varDelta t}{\varDelta S}S_k\right) V^n +\left( \frac{1}{2}\frac{\varDelta t}{(\varDelta S)^2 }S^2_k\sigma ^2\right) V^n\nonumber \\&\quad +\frac{\epsilon \varDelta tC}{V^{n+\frac{1}{2}}_k+\epsilon -q_k}, \end{aligned}$$
(70)

or

$$\begin{aligned} (1+r\varDelta t)V^n\ge V^{n+1}+\frac{\epsilon \varDelta tC }{V^{n+\frac{1}{2}}_k+\epsilon -q_k }. \end{aligned}$$
(71)

Since we have just seen that

$$\begin{aligned} V^{n+\frac{1}{2}}_k\ge q_k, \end{aligned}$$
(72)

both in the fully implicit and in the semi-implicit case, it follows from (71) that

$$\begin{aligned} (1+r\varDelta t)V^n\ge V^{n+1}, \end{aligned}$$
(73)

and then it follows by induction on \(n\) that

$$\begin{aligned} V^n_j\ge 0, \quad \forall j, \quad n=N+1, N,\ldots ,0. \end{aligned}$$
(74)

Theorem 2

If (41) holds, the numerical solution computed by the fully implicit scheme (42) satisfies the bound

$$\begin{aligned} V^n_j\ge \max (E-S_j,0), \quad \forall j, \quad n=N+1, N,\ldots ,0. \end{aligned}$$
(75)

Similarly, if (41) and (8) hold, the numerical solution computed by the semi-implicit version of (42) satisfies the bound (75).

We can implement backward and central FDs similar to forward FDs for \(\frac{\partial V}{\partial S}\) and obtain similar results.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kalantari, R., Shahmorad, S. & Ahmadian, D. The Stability Analysis of Predictor–Corrector Method in Solving American Option Pricing Model. Comput Econ 47, 255–274 (2016). https://doi.org/10.1007/s10614-015-9483-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-015-9483-x

Keywords

Navigation