Skip to main content
Log in

Financial Transaction Tax: Policy Analytics Based on Optimal Trading

  • Published:
Computational Economics Aims and scope Submit manuscript

Abstract

Introducing a financial transaction tax (FTT) has recently attracted tremendous global attention, with both proponents and opponents disputing its dampening effects on financial markets. In this paper we present a model to show under some circumstances that there exists a win-win situation via optimal trading when the tax burden can be dispersed. The way to absorb FTT in our model is to adjust the bid–ask spread. In our optimal trading model that considers FTT, the representative traders depend on the liquidity (market depth) they supply to weight their associated transaction cost by adjusting the spread ex post. We illustrate the analytical properties and computational solutions of our model when finding the optimal trading strategy under different market situations in order to offset FTT. We also conduct a simulation study to show the superior performance of our proposed optimal trading strategy in comparison to the alternative strategies that do not consider absorbing FTT. The results demonstrate that there is indeed a win-win situation, because financial institutions will not be worse off if such an optimal trading strategy is applied to offset FTT and reduce their transaction cost.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. A distinction could be made between a securities transaction tax (STT), a currency transaction tax (CTT), and a bank debit tax.

  2. The 11 participating countries are Austria, Belgium, Estonia, France, Germany, Greece, Italy, Portugal, Slovakia, Slovenia and Spain.

  3. International Bulletin for Fiscal Documentation, IMF, 2010.

  4. CFTC (2010).

  5. A basis point (bp) is a unit equal to one hundredth of a percentage point, i.e., \(1\,\mathrm{bp} = 0.01\,\%\).

References

  • Alfonsi, A., Fruth, A., & Schied, A. (2010). Optimal execution strategies in limit order books with general shape functions. Quantitative Finance, 10(2), 143–157.

    Article  Google Scholar 

  • Almgren, R., & Chriss, N. (1999). Value under liquidation. Risk, 12, 61–63.

    Google Scholar 

  • Almgren, R., & Chriss, N. (2000). Optimal execution of portfolios. Journal of Risk, 3(2), 5–39.

    Google Scholar 

  • Bertsimas, D., & Lo, A. W. (1998). Optimal control of execution costs. Journal of Financial Markets, 1, 1–50.

    Article  Google Scholar 

  • CFTC. (2010). Proposed rules. Federal Register, 75(112), 33198–33202.

  • Darvas, Z., & von Weizsäcker, J. (2011). Financial transaction tax: Small is beautiful. Society and Economy, 33(3), 449–473.

    Article  Google Scholar 

  • Goldstein, M. A., Irvine, P., Kandel, E., & Wienern, Z. (2009). Brokerage commissions and institutional trading patterns. Review of Financial Studies, 22(12), 5175–5212.

    Article  Google Scholar 

  • Harris, L. (2003). Trading and exchanges: Market microstructure for practitioners. New York: Oxford University Press.

    Google Scholar 

  • Huberman, G., & Stanzel, W. (2004). Arbitrage-free price update and price-impact functions. Econometrica, 72(4), 1247–1275.

    Article  Google Scholar 

  • Keynes, J. M. (1936). The general theory of employment, interest and money. London: MacMillan.

    Google Scholar 

  • Kruse, T., & Sun, E. W. (2014). News trader, liquidity and transaction cost. Market microstructure and nonlinear dynamics: Keeping financial crisis in context (pp. 95–127). New York: Springer.

  • McInish, T., & Wood, R. (1992). An analysis of intraday patterns in bid/ask spreads for NYSE stocks. The Journal of Finance, 47(2), 753–764.

    Article  Google Scholar 

  • Obizhaeva, A., & Wang, J. (2013). Optimal trading strategy and supply/demand dynamics. Journal of Financial Market, 16(1), 132.

    Article  Google Scholar 

  • Plerou, V., Gopikrishnan, P., & Stanley, H. E. (2005). Quantifying fluctuations in market liquidity: Analysis of the bid-ask spread. Physical Review E, 71, 046131.

    Article  Google Scholar 

  • Ponzi, A., Lillo, F., & Mantegna, R. N. (2009). Market reaction to a bid-ask spread change: A power-law relaxation dynamics. Physical Review E, 80, 016112.

    Article  Google Scholar 

  • Schäfer, D., Schulmeister, S., Vella, J., Masciandaro, D., Passarelli, F., & Buckley, R. (2012). Forum: The financial transaction Tax-Boon or Bane? Intereconomics: Review of European. Economic Policy, 47(2), 76–103.

    Google Scholar 

  • Schulmeister, S. (2009). A general financial transaction tax: A short cut of the pros, the cons and a proposal. WIFO Working Paper No. 344.

  • Schulmeister, S., Schratzenstaller, M., Picek, O. (2008). A general financial transaction tax: motives, revenues, feasibility and effects. WIFO Working Paper.

  • Schwartz, T. R. (1988). Equity Markets. New York: Harper and Row.

    Google Scholar 

  • Sun, E. W., & Kruse, T. (2013). Economic modeling for optimal trading of financial asset in volatile market. Economics Bulletin, 33(3), 1788–1795.

    Google Scholar 

  • Sun, E. W., Kruse, T., & Yu, M. T. (2013). High frequency trading, liquidity, and execution cost. Annals of Operations Research. doi:10.1007/s10479-013-1382-8.

  • Ting, C., Warachka, M., & Zhao, Y. (2007). Optimal liquidation strategies and their implications. Journal of Economic Dynamics and Control, 31, 1431–1450.

    Article  Google Scholar 

  • Tobin, J. (1978). A proposal for international monetary reform. Eastern Economic Journal, 4(3–4), 153–159.

    Google Scholar 

  • Werner, I. M. (2003). NYSE order flow, spreads, and information. Journal of Financial Markets, 6, 309–335.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edward W. Sun or Min-Teh Yu.

Appendices

Appendix 1: Proof of Proposition 1

We use induction to prove Proposition 1. For the optimal value function of the last time period we obtain

$$\begin{aligned} J_T\left( X_T,D_T,F_T,T,x_{t_{N-1}}\right)&= \left( F_T+\frac{S(x_{t_{N-1}})}{2}\right) X_T\\&\quad +\left[ \lambda (X_0-X_T)+D_T+\frac{X_T}{2q}\right] X_T\\&= \left( F_T+\frac{\alpha x_{t_{N-1}}+\beta }{2}\right) X_T\\&\quad +\,\left[ \lambda (X_0-X_T)+D_T+\frac{X_T}{2q}\right] X_T. \end{aligned}$$

This is Eq. 2 with Eq. 4. We now verify that for every \(t_n\in \{ t_{0},\ldots ,t_{N} \}\) the optimal value function has the form given by Eq. 2. We assume that Proposition 1 holds true for some \(t_{n+1}\in \{ t_{1},\ldots ,t_{N} \}\) and then find for \(t_n\):

$$\begin{aligned}&J_{t_n}\Big (X_{t_n},D_{t_n},F_{t_n},{t_n},x_{t_{n-1}}\Big ) \nonumber \\&\quad =\, \mathop {x_{t_n}}\limits ^{min}\left\{ \left[ \left( F_{t_n}+\frac{S(x_{t_{n-1}})}{2}\right) +\lambda \left( X_0-X_{t_n}\right) +D_{t_n}+\frac{x_{t_n}}{2q}\right] x_{t_n} \right. \nonumber \\&\qquad \left. +\,E_{t_n}J_{t_{n+1}}\left( X_{t_n}-x_{t_n},\Big (D_{t_n}+\kappa x_{t_n}\Big )e^{-\rho \tau }, F_{t_{n+1}},{t_{n+1}},x_{t_{n}}\right) \right\} \nonumber \\&\quad =\, \mathop {x_{t_n}}\limits ^{min}\Bigg \{\left[ \Big (F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}\Big )+\lambda \Big (X_0-X_{t_n}\Big ) +D_{t_n}+\frac{x_{t_n}}{2q}\right] x_{t_n} \nonumber \\&\qquad +\,\Big (F_{t_n}+\frac{\beta }{2}\Big )\Big (X_{t_n}-x_{t_n}\Big )+\lambda X_0\Big (X_{t_n}-x_{t_n}\Big ) +d_{n+1}\Big (X_{t_n}-x_{t_n}\Big )^2 \nonumber \\&\qquad +\,l_{n+1}\Big (X_{t_n}-x_{t_n}\Big )\Big (D_{t_n}+\kappa x_{t_n}\Big )e^{-\rho \tau }+f_{n+1}\Big (D_{t_n}+\kappa x_{t_n}\Big )^2e^{-2\rho \tau } \nonumber \\&\qquad +\,h_{n+1}\Big (X_{t_n}-x_{t_n}\Big )x_{t_n}+s_{n+1}\Big (D_{t_n}+\kappa x_{t_n}\Big )e^{-\rho \tau }x_{t_n} +u_{n+1}x_{t_n}^2 \Bigg \}. \end{aligned}$$
(9)

To obtain the minimum, we differentiate Eq. 9 with respect to \(x_{t_n}\):

$$\begin{aligned} \frac{\partial J}{\partial x_{t_n}}&= F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}+\lambda \left( X_0-X_{t_n}\right) +D_{t_n}+\frac{x_{t_n}}{q}\\&-\,\left( F_{t_n}+\frac{\beta }{2}\right) -\lambda X_0-2d_{n+1}\left( X_{t_n}-x_{t_n}\right) \\&+\,l_{n+1}\left( \kappa X_{t_n}-\kappa x_{t_n}-D_{t_n}-\kappa x_{t_n}\right) e^{-\rho \tau }+f_{n+1}2\kappa \left( D_{t_n}+\kappa x_{t_n}\right) e^{-2\rho \tau } \\&+\,h_{n+1}\left( X_{t_n}-2x_{t_n}\right) +s_{n+1}\left( D_{t_n}+2\kappa x_{t_n}\right) e^{-\rho \tau }+2u_{n+1}x_{t_n} \\&= 2x_{t_n}\left[ \frac{1}{2q}+d_{n+1}-\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }\right. \\&\left. -\,h_{n+1}+\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\right] +\,\frac{\alpha x_{t_{n-1}}}{2} \\&+\,X_{t_n}\left[ -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right] \\&+\,D_{t_n}\left[ 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right] . \end{aligned}$$

Seting \(\frac{\partial J}{\partial x_{t_n}}\mathop {=}\limits ^{!}0\) we obtain the optimal choice:

$$\begin{aligned} x_{t_n}&= wX_{t_n}+vD_{t_n}+m, \end{aligned}$$
(10)

where

$$\begin{aligned} w&= -\frac{1}{2}\delta _{n+1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) , \nonumber \\ v&= -\frac{1}{2}\delta _{n+1}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) , \nonumber \\ m&= -\frac{1}{2}\delta _{n+1}\left( \frac{\alpha x_{t_{n-1}}}{2}\right) , \nonumber \\ \delta _{n+1}&= \left( \frac{1}{2q}+d_{n+1}-\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }-h_{n+1}\right. \nonumber \\&\quad \left. +\,\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\right) ^{-1}. \end{aligned}$$
(11)

This proves Eq. 1 of Proposition 1. Putting Eq. 10 into Eq. 9 we find for the optimal value function:

$$\begin{aligned}&J_{t_n}\left( X_{t_n},D_{t_n},F_{t_n},{t_n},x_{t_{n-1}}\right) \\&\quad =\left[ \left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}\right) +\lambda \left( X_0-X_{t_n}\right) +D_{t_n}+\frac{wX_{t_n}+vD_{t_n}+m}{2q}\right] \\&\qquad \times \left( wX_{t_n}+vD_{t_n}+m\right) \\&\qquad +\,\left( F_{t_n}+\frac{\beta }{2}\right) \left( X_{t_n}-wX_{t_n}-vD_{t_n}-m\right) +\lambda X_0\left( X_{t_n}-wX_{t_n}-vD_{t_n}-m\right) \\&\qquad +\,d_{n+1}\left( X_{t_n}-wX_{t_n}-vD_{t_n}-m\right) ^2 +l_{n+1}\left( X_{t_n}-wX_{t_n}-vD_{t_n}-m\right) \\&\qquad \times \, \left( D_{t_n}+\kappa \left( wX_{t_n}+vD_{t_n}+m\right) \right) e^{-\rho \tau } \\&\qquad +\,f_{n+1}\left( D_{t_n}+\kappa \left( wX_{t_n}+vD_{t_n}+m\right) \right) ^2e^{-2\rho \tau }+h_{n+1}\left( X_{t_n}-wX_{t_n}-vD_{t_n}-m\right) \\&\qquad \times \, \left( wX_{t_n}+vD_{t_n}+m\right) \\&\qquad +\,s_{n+1}\left( D_{t_n}+\kappa \left( wX_{t_n}+vD_{t_n}+m\right) \right) e^{-\rho \tau }\left( wX_{t_n}+vD_{t_n}+m\right) \\&\qquad +\,u_{n+1}\left( wX_{t_n}+vD_{t_n}+m\right) ^2\\&\quad =X_{t_n}^2 \left( -\lambda w+\frac{w^2}{2q}+d_{n+1}\left( 1-w\right) ^2+\kappa l_{n+1}e^{-\rho \tau }w\left( 1-w\right) +{\kappa }^2f_{n+1}e^{-2\rho \tau }w^2 \right. \\&\qquad \left. +\,h_{n+1}\left( 1-w\right) +\kappa s_{n+1}e^{-\rho \tau }w^2+u_{n+1}w^2 \right) \\&\qquad +\,D_{t_n}^2 \left( v+\frac{v^2}{2q}+d_{n+1}v^2-l_{n+1}e^{-\rho \tau }v\left( 1+\kappa v\right) +f_{n+1}e^{-2\rho \tau }\left( 1+\kappa v\right) ^2-h_{n+1}v^2 \right. \\&\qquad \left. +\, s_{n+1}e^{-\rho \tau }v\left( 1+\kappa v\right) +u_{n+1}v^2\right) \\&\qquad +\,X_{t_n}D_{t_n} \Bigg (-\lambda v+w+\frac{wv}{2q}-2d_{n+1}\left( 1-w\right) v- l_{n+1}e^{-\rho \tau }\big (\left( 1-w\right) \left( 1+\kappa v\right) -\kappa vw\big )\\&\qquad +\,2{\kappa }f_{n+1}e^{-2\rho \tau }w\left( 1+\kappa v\right) +h_{n+1}v\left( 1-w\right) -h_{n+1}vw+\kappa s_{n+1}e^{-\rho \tau }vw \\&\qquad +\,s_{n+1}e^{-\rho \tau }w\left( 1+\kappa v\right) +2u_{n+1}wv\Bigg ) \\&\qquad +\,X_{t_n} \left( w\left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}+\lambda X_0\right) -\lambda m+\frac{mw}{q}+\left( 1-w\right) \left( F_{t_n}+\frac{\beta }{2}\right) \right. \\&\qquad +\,\lambda X_0\left( 1-w\right) -2d_{n+1}m\left( 1-w\right) - l_{n+1}e^{-\rho \tau }\left( \kappa m\left( 1-w\right) -\kappa wm\right) \\&\qquad \left. +\,2{\kappa }^2f_{n+1}e^{-2\rho \tau }wm+h_{n+1}m\left( 1-w\right) -h_{n+1}mw+2\kappa s_{n+1}e^{-\rho \tau }mw+2u_{n+1}mw\right) \\&\qquad +\,D_{t_n} \Bigg (v\left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}+\lambda X_0\right) +m+\frac{mw}{q}-v\left( F_{t_n}+\frac{\beta }{2}\right) -\lambda X_0v \\&\qquad +\,2d_{n+1}mv+l_{n+1}e^{-\rho \tau }\left( -\left( 1+\kappa v\right) m-\kappa vm\right) +2{\kappa }f_{n+1}e^{-2\rho \tau }\left( 1+\kappa v\right) m \\&\qquad -\,2h_{n+1}mv-h_{n+1}mw+ s_{n+1}e^{-\rho \tau }m\left( 1+\kappa v\right) +s_{n+1}e^{-\rho \tau }m\kappa v+2u_{n+1}mv\Bigg ) \\&\qquad +\, \Bigg (m\left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}+\lambda X_0\right) +\frac{m^2}{2q}-m\left( F_{t_n}+\frac{\beta }{2}\right) -\lambda X_0m+d_{n+1}m^2 \\&\qquad -\,l_{n+1}\kappa e^{-\rho \tau }m^2+{\kappa }^2m^2f_{n+1}e^{-2\rho \tau }-h_{n+1}m^2+s_{n+1}e^{-\rho \tau }m^2\kappa +u_{n+1}m^2\Bigg ). \end{aligned}$$

We then simplify the coefficients.

For \(X_{t_n}^2\), we obtain:

$$\begin{aligned}&-\,\lambda w+\frac{w^2}{2q}+d_{n+1}\left( 1-w\right) ^2+\kappa l_{n+1}e^{-\rho \tau }w\left( 1-w\right) +{\kappa }^2f_{n+1}e^{-2\rho \tau }w^2 \\&\qquad +\,h_{n+1}\left( 1-w\right) +\kappa s_{n+1}e^{-\rho \tau }w^2+u_{n+1}w^2 \\&\quad = d_{n+1}+w\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \\&\qquad +\,w^2\left( \frac{1}{2q}+d_{n+1}-\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }-h_{n+1}+\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\!\!\right) \\&\quad = d_{n+1}-\frac{1}{2}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) ^2 \\&\qquad +\,\frac{1}{4}\delta _{n+1}^{-2}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) ^2\delta _{n+1} \\&\quad =d_{n+1}-\frac{1}{4}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) ^2. \end{aligned}$$

For \(D_{t_n}^2\), we obtain:

$$\begin{aligned}&v+\frac{v^2}{2q}+d_{n+1}v^2-l_{n+1}e^{-\rho \tau }v\left( 1+\kappa v\right) +f_{n+1}e^{-2\rho \tau }\left( 1+\kappa v\right) ^2-h_{n+1}v^2 \\&\qquad +\,s_{n+1}e^{-\rho \tau }v\left( 1+\kappa v\right) +u_{n+1}v^2 \\&\quad = f_{n+1}e^{-2\rho \tau }+v\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\qquad +\,v^2\left( \frac{1}{2q}+d_{n+1}-\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }-h_{n+1}+\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\right) \\&\quad = f_{n+1}e^{-2\rho \tau }-\frac{1}{2}\delta _{n+1}^{-1}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) ^2\\&\qquad +\,\frac{1}{4}\delta _{n+1}^{-2}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) ^2\delta _{n+1}\\&\quad = f_{n+1}e^{-2\rho \tau }-\frac{1}{4}\delta _{n+1}^{-1}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) ^2. \end{aligned}$$

For \(X_{t_n}D_{t_n}\), we obtain:

$$\begin{aligned}&-\,\lambda v+w+\frac{wv}{2q}-2d_{n+1}(1-w)v-l_{n+1}e^{-\rho \tau }((1-w)(1+\kappa v)-\kappa vw) \\&\qquad +\,2{\kappa }f_{n+1}e^{-2\rho \tau }w(1+\kappa v)+h_{n+1}v(1-w)-h_{n+1}vw+\kappa s_{n+1}e^{-\rho \tau }vw \\&\qquad +\,s_{n+1}e^{-\rho \tau }w(1+\kappa v)+2u_{n+1}wv \\&\quad = l_{n+1}e^{-\rho \tau }+w\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\qquad +\,v\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \\&\qquad +\,2vw\left( \frac{1}{2q}+d_{n{+}1}{-}\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }-h_{n{+}1}{+}\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\right) \\&\quad = l_{n+1}e^{-\rho \tau } -\,\frac{1}{2}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \\&\qquad \times \left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\qquad -\,\frac{1}{2}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \\&\qquad \times \left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\qquad +\,2\frac{1}{4}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \\&\qquad \times \left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\quad = l_{n+1}e^{-\rho \tau }-\frac{1}{2}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \\&\qquad \times \left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) . \end{aligned}$$

For \(X_{t_n}\), we obtain:

$$\begin{aligned}&w\left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}+\lambda X_0\right) -\lambda m+\frac{mw}{q}+\left( 1-w\right) \left( F_{t_n}+\frac{\beta }{2}\right) +\lambda X_0\left( 1-w\right) \\&\qquad -\,2d_{n+1}m\left( 1-w\right) - l_{n+1}e^{-\rho \tau }\left( \kappa m\left( 1-w\right) -\kappa wm\right) +2{\kappa }^2f_{n+1}e^{-2\rho \tau }wm \\&\qquad +\,h_{n+1}m\left( 1-w\right) -h_{n+1}mw+2\kappa s_{n+1}e^{-\rho \tau }mw+2u_{n+1}mw \\&\quad = \left( F_{t_n}+\frac{\beta }{2}+\lambda X_0\right) +w\left( \frac{\alpha x_{t_{n-1}}}{2}\right) +m\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \\&\qquad +\,2wm\left( \frac{1}{2q}+d_{n+1}-\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }-h_{n+1}+\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\right) \\&\quad = \left( F_{t_n}+\frac{\beta }{2}+\lambda X_0\right) -\frac{1}{2}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) \\&\qquad -\,\frac{1}{2}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) \\&\qquad +\,2\frac{1}{4}\delta _{n+1}^{-2}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) \delta _{n+1} \\&\quad = \left( F_{t_n}+\frac{\beta }{2}+\lambda X_0\right) -\frac{1}{2}\delta _{n+1}^{-1}\left( -\lambda -2d_{n+1}+\kappa l_{n+1}e^{-\rho \tau }+h_{n+1}\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) . \end{aligned}$$

For \(D_{t_n}\), we obtain:

$$\begin{aligned}&v\left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}+\lambda X_0\right) +m+\frac{mw}{q}-v\left( F_{t_n}+\frac{\beta }{2}\right) -\lambda X_0v+2d_{n+1}mv \\&\quad +\,l_{n+1}e^{-\rho \tau }\left( -\left( 1+\kappa v\right) m-\kappa vm\right) +2{\kappa }f_{n+1}e^{-2\rho \tau }\left( 1+\kappa v\right) m-2h_{n+1}mv-h_{n+1}mw\\&\quad +\,s_{n+1}e^{-\rho \tau }m\left( 1+\kappa v\right) +s_{n+1}e^{-\rho \tau }m\kappa v+2u_{n+1}mv \\&\quad = v\left( \frac{\alpha x_{t_{n-1}}}{2}\right) +m\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\qquad +\,2vm\left( \frac{1}{2q}+d_{n+1}-\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }-h_{n+1}+\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\right) \\&\quad = -\frac{1}{2}\delta _{n+1}^{-1}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) \\&\qquad -\,\frac{1}{2}\delta _{n+1}^{-1}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) \\&\quad +\,2\frac{1}{4}\delta _{n+1}^{-2}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) \delta _{n+1} \\&\quad = -\frac{1}{2}\delta _{n+1}^{-1}\left( 1-l_{n+1}e^{-\rho \tau }+2{\kappa }f_{n+1}e^{-2\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \left( \frac{\alpha x_{t_{n-1}}}{2}\right) . \end{aligned}$$

Without \(X_{t_n}\) or \(D_{t_n}\), we obtain:

$$\begin{aligned}&m\left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}+\lambda X_0\right) +\frac{m^2}{2q}-m\left( F_{t_n}+\frac{\beta }{2}\right) -\lambda X_0m+d_{n+1}m^2 \\&\qquad -\,l_{n+1}\kappa e^{-\rho \tau }m^2+{\kappa }^2m^2f_{n+1}e^{-2\rho \tau }-h_{n+1}m^2+s_{n+1}e^{-\rho \tau }m^2\kappa +u_{n+1}m^2\\&\quad = m\left( \frac{\alpha x_{t_{n-1}}}{2}\right) +m^2\Bigg (\frac{1}{2q}+d_{n+1}-\kappa l_{n+1}e^{-\rho \tau }+{\kappa }^2f_{n+1}e^{-2\rho \tau }\\&\qquad -\,h_{n+1}+\kappa s_{n+1}e^{-\rho \tau }+u_{n+1}\Bigg ) \\&\quad = -\frac{1}{2}\delta _{n+1}^{-1}\left( \frac{\alpha x_{t_{n-1}}}{2}\right) ^2+\frac{1}{4}\delta _{n+1}^{-2}\left( \frac{\alpha x_{t_{n-1}}}{2}\right) ^2\delta _{n+1} \\&\quad = -\frac{1}{4}\delta _{n+1}^{-1}\left( \frac{\alpha x_{t_{n-1}}}{2}\right) ^2. \end{aligned}$$

From this we obtain Eq. 2 through Eq. 3. This concludes the proof.

Appendix 2: Proof of Proposition 2

We use induction to prove Proposition 2. For the last period we have:

$$\begin{aligned} J_T\left( X_T,D_T,F_T,T,x_{t_{N-1}}\right)&= \left( F_T+\frac{\alpha x_{t_{N-1}}+\beta }{2}\right) X_T\\&+\,\left[ \lambda (X_0-X_T)+D_T+\frac{X_T}{2q}\right] X_T. \end{aligned}$$

This satisfies Eq. 6 with Eq. 8. Using that Eq. 6 holds true for some \(t_{n+1}\) we find for \(t_n\):

$$\begin{aligned}&J_{t_n}\left( X_{t_n},D_{t_n},F_{t_n},{t_n},x_{t_{n-1}}\right) \nonumber \\&\quad =\; \mathop {x_{t_n}}\limits ^{min}\Bigg \{ \left[ \left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}\right) +\lambda \left( X_0-X_{t_n}\right) +D_{t_n}+\frac{x_{t_n}}{2q}\right] x_{t_n}\nonumber \\&\qquad +\,E_{t_n}J_{t_{n+1}}\left( X_{t_n}-x_{t_n},\left( D_{t_n}+\kappa x_{t_n}\right) e^{-\rho \tau },F_{t_{n+1}},{t_{n+1}},x_{t_{n}}\right) \Bigg \} \nonumber \\&\quad =\; \mathop {x_{t_n}}\limits ^{min}\Bigg \{ \left[ \left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}\right) +\lambda \left( X_0-X_{t_n}\right) +D_{t_n}+\frac{x_{t_n}}{2q}\right] x_{t_n}\nonumber \\&\qquad \!+\!\,\left( a\times a^{N-\left( n+1\right) }F_{t_n}\!+\!\frac{\beta }{2}\right) \left( X_{t_n}\!-\!x_{t_n}\right) \!+\!\lambda X_0\left( X_{t_n}\!-\!x_{t_n}\right) \!+\!b_{n+1}\left( X_{t_n}-x_{t_n}\right) ^2 \nonumber \\&\qquad +\,c_{n+1}\left( D_{t_n}+\kappa x_{t_n}\right) ^2e^{-2\rho \tau }{+}d_{n+1}mF_{t_n}^2+g_{n+1}\left( X_{t_n}-x_{t_n}\right) \left( D_{t_n}{+}\kappa x_{t_n}\right) e^{{-}\rho \tau } \nonumber \\&\qquad +\,h_{n+1}\left( X_{t_n}-x_{t_n}\right) aF_{t_n}+l_{n+1}\left( D_{t_n}+\kappa x_{t_n}\right) e^{-\rho \tau }aF_{t_n} \nonumber \\&\qquad +\,v_{n+1}\left( X_{t_n}-x_{t_n}\right) x_{t_n}\!+\!w_{n+1}aF_{t_n}x_{t_n}+s_{n+1}\left( D_{t_n}\!+\!\kappa x_{t_n}\right) e^{-\rho \tau }x_{t_n}+u_{n+1}x_{t_n}^2\Bigg \}.\nonumber \\ \end{aligned}$$
(12)

To obtain the minimum we differentiate Eq. 12 with respect to \(x_{t_n}\):

$$\begin{aligned} \frac{\partial J}{\partial x_{t_n}}&= \left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}\right) +\lambda \left( X_0-X_{t_n}\right) +D_{t_n}+\frac{x_{t_n}}{q}\\&-\,\left( a^{N-n}F_{t_n}+\frac{\beta }{2}\right) -\lambda X_0-2b_{n+1}\left( X_{t_n}-x_{t_n}\right) \\&+\,2\kappa c_{n+1}\left( D_{t_n}+\kappa x_{t_n}\right) e^{-2\rho \tau }+g_{n+1} e^{-\rho \tau }\left[ \kappa \left( X_{t_n}-x_{t_n}\right) -\left( D_{t_n}+\kappa x_{t_n}\right) \right] \\&-\,h_{n+1}aF_{t_n} +l_{n+1}\kappa e^{-\rho \tau }aF_{t_n}+v_{n+1}\left( X_{t_n}-2x_{t_n}\right) +w_{n+1}aF_{t_n}\\&+\,s_{n+1}\left( D_{t_n}+\kappa 2x_{t_n}\right) e^{-\rho \tau }+2u_{n+1}x_{t_n} \\&= x_{t_n}\Bigg (\frac{1}{q}+2b_{n+1}-2g_{n+1}\kappa e^{-\rho \tau }+c_{n+1}2\kappa ^2 e^{-2\rho \tau }-2v_{n+1}\\&+\,2s_{n+1}\kappa e^{-\rho \tau }+2u_{n+1}\Bigg )+X_{t_n}\left( -\lambda -2b_{n+1}+g_{n+1} e^{-\rho \tau }\kappa +v_{n+1}\right) \\&+\,D_{t_n}\left( 1+c_{n+1}2\kappa e^{-2\rho \tau }-g_{n+1} e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&+\,F_{t_n}\left( 1-a^{N-n}-h_{n+1}a+l_{n+1}\kappa e^{-\rho \tau }a+w_{n+1}a\right) +\frac{\alpha x_{t_{n-1}}}{2}. \end{aligned}$$

Setting \(\frac{\partial J}{\partial x_{t_n}}\mathop {=}\limits ^{!}0\) we obtain the optimal choice:

$$\begin{aligned} x_{t_n}=\gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi , \end{aligned}$$
(13)

where

$$\begin{aligned} \gamma&= -\frac{1}{2}\delta _{n+1}\left( 1+c_{n+1}2\kappa e^{-2\rho \tau }-g_{n+1} e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) , \nonumber \\ \varphi&= -\frac{1}{2}\delta _{n+1}\left( -\lambda -2b_{n+1}+g_{n+1} e^{-\rho \tau }\kappa +v_{n+1}\right) , \nonumber \\ \eta&= -\frac{1}{2}\delta _{n+1}\left( 1-a^{N-n}-h_{n+1}a+l_{n+1}\kappa e^{-\rho \tau }a+w_{n+1}a\right) , \nonumber \\ \varpi&= -\frac{1}{2}\delta _{n+1}\left( \frac{\alpha x_{t_{n-1}}}{2}\right) , \nonumber \\ \delta _{n+1}&= \left( \frac{1}{2q}\!+\!b_{n+1}\!-\!g_{n+1}\kappa e^{-\rho \tau }\!+\!c_{n+1}\kappa ^2 e^{-2\rho \tau }-v_{n+1}+s_{n+1}\kappa e^{-\rho \tau }+u_{n+1}\right) ^{-1}.\nonumber \\ \end{aligned}$$
(14)

From this we find, that Eq. 5 holds true. We then obtain:

$$\begin{aligned}&J_{t_n}\left( X_{t_n},D_{t_n},F_{t_n},{t_n},x_{t_{n-1}}\right) \\&\quad =\, \Bigg [\left( F_{t_n}+\frac{\alpha x_{t_{n-1}}+\beta }{2}\right) +\lambda \left( X_0-X_{t_n}\right) +D_{t_n}\\&\qquad +\,\frac{\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) }{2q}\Bigg ]\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \\&\qquad +\,\left( a\times a^{N-\left( n+1\right) }F_{t_n}+\frac{\beta }{2}\right) \Big (X_{t_n}-\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big ) \\&\qquad +\,\lambda X_0\Big (X_{t_n}-\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )\\&\qquad +\,b_{n+1}\Big (X_{t_n}-\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )^2 \\&\qquad +\,c_{n+1}\Big (D_{t_n}+\kappa \left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )^2e^{-2\rho \tau }+d_{n+1}mF_{t_n}^2 \\&\qquad +\,g_{n+1}\Big (X_{t_n}-\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )\\&\qquad \times \,\Big (D_{t_n}+\,\kappa \left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )e^{-\rho \tau } \\&\qquad +\,h_{n+1}\Big (X_{t_n}-\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )aF_{t_n}\\&\qquad +\,l_{n+1}\Big (D_{t_n}+\kappa \left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )e^{-\rho \tau }aF_{t_n} \\&\qquad +\,v_{n+1}\Big (X_{t_n}-\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \\&\qquad +\,s_{n+1}\Big (D_{t_n}+\kappa \left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \Big )e^{-\rho \tau }\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) \\&\qquad +\,u_{n+1}\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) ^2+w_{n+1}aF_{t_n}\left( \gamma D_{t_n}+\varphi X_{t_n}+\eta F_{t_n}+\varpi \right) . \end{aligned}$$

We now sort:

$$\begin{aligned}&J_{t_n}\left( X_{t_n},D_{t_n},F_{t_n},{t_n},x_{t_{n-1}}\right) \\&\quad =\, D_{t_n}\Big (\gamma \frac{\beta }{2}+\lambda X_0 \gamma +\frac{2\gamma \varpi }{2q}+\varpi -\gamma \frac{\beta }{2}-\lambda X_0 \gamma +2b_{n+1}\gamma \varpi \\&\qquad +\,2c_{n+1}e^{-2\rho \tau }\left( 1+\kappa \gamma \right) \kappa \varpi -g_{n+1}e^{-\rho \tau }\left( \kappa \varpi \gamma +\varpi \left( 1+\kappa \gamma \right) \right) \\&\qquad -\,v_{n+1}2\gamma \varpi +s_{n+1}e^{-\rho \tau }\left( 2\kappa \gamma \varpi +\varpi \right) +\,2u_{n+1}\gamma \varpi \Big )\\&\qquad +\,F_{t_n}\Big (\eta \frac{\beta }{2}+\lambda X_0 \eta +\frac{2\eta \varpi }{2q}+\varpi -a^{N-n}\varpi -\eta \frac{\beta }{2}-\lambda X_0 \eta +2b_{n+1}\eta \varpi \\&\qquad +\,2c_{n+1}e^{-2\rho \tau }\kappa ^2\eta \varpi -\,2g_{n+1}e^{-\rho \tau }\kappa \eta \varpi -h_{n+1}a\varpi +l_{n+1}e^{-\rho \tau }a\kappa \varpi \\&\qquad -\,v_{n+1}2\eta \varpi +\,2s_{n+1}e^{-\rho \tau }\kappa \eta \varpi +2u_{n+1}\eta \varpi +w_{n+1}a\varpi \Big ) \\&\qquad +\,X_{t_n}\Big (\varphi \frac{\beta }{2}+\lambda X_0\varphi +\frac{2\varphi \varpi }{2q}-\lambda \varpi +\frac{\beta }{2}-\varphi \frac{\beta }{2}+\lambda X_0-\lambda X_0\varphi \\&\qquad -\,2b_{n+1}\big (1-\varphi \big )\varpi +2c_{n+1}e^{-2\rho \tau }\kappa ^2\varphi \varpi +\,g_{n+1}e^{-\rho \tau }\Big (\big (1-\varphi \big )\kappa \varpi -\varpi \kappa \varphi \Big )\\&\qquad -v_{n+1}\big (2\varphi \varpi -\varpi \big ) +\,2s_{n+1}e^{-\rho \tau }\kappa \varphi \varpi +2u_{n+1}\varphi \varpi \Big ) \\&\qquad +\,D_{t_n}^2\Big (\gamma +\frac{\gamma ^2}{2q}+b_{n+1}\gamma ^2+c_{n+1}e^{-2\rho \tau }\big (1+\kappa \gamma \big )^2 -\,g_{n+1}e^{-\rho \tau }\gamma \big (1+\kappa \gamma \big )\\&\qquad -\,v_{n+1}\gamma ^2 +\,s_{n+1}e^{-\rho \tau }\big (\kappa \gamma ^2+\gamma \big )+u_{n+1}\gamma ^2\Big ) \\&\qquad +\,F_{t_n}^2\Big (\eta {+}\frac{\eta ^2}{2q}{-}a^{N-n}\eta +b_{n{+}1}\eta ^2{+}c_{n+1}e^{-2\rho \tau }\kappa ^2\eta ^2+\,d_{n+1}m-g_{n+1}e^{-\rho \tau }\kappa \eta ^2\\&\qquad -\,h_{n+1}a\eta +\,l_{n+1}e^{-\rho \tau }a\kappa \eta -v_{n+1}\eta ^2+s_{n+1}e^{-\rho \tau }\kappa \eta ^2+u_{n+1}\eta ^2+w_{n+1}a\eta \Big ) \\&\qquad +\,X_{t_n}^2\Big (-\lambda \varphi +\frac{\varphi ^2}{2q}+b_{n+1}\left( 1-\varphi \right) ^2+c_{n+1}e^{-2\rho \tau }\kappa ^2\varphi ^2\\&\qquad +\,g_{n+1}e^{-\rho \tau }\left( 1-\varphi \right) \kappa \varphi -v_{n+1}\left( \varphi ^2-\varphi \right) +\,s_{n+1}e^{-\rho \tau }\kappa \varphi ^2+u_{n+1}\varphi ^2\Big )\\&\qquad +\, D_{t_n}F_{t_n}\Big (\gamma +\frac{2\gamma \eta }{2q}+\eta -a^{N-n}\gamma +2b_{n+1}\gamma \eta +2c_{n+1}e^{-2\rho \tau }\left( 1+\kappa \gamma \right) y\kappa \eta \\&\qquad -\,g_{n+1}e^{-\rho \tau }\left( \kappa \eta \gamma +\eta \left( 1+\kappa \gamma \right) \right) -\,h_{n+1}a\gamma +l_{n+1}e^{-\rho \tau }a\left( 1+\kappa \gamma \right) -v_{n+1}2\gamma \eta \\&\qquad +s_{n+1}e^{-\rho \tau }\left( 2\kappa \gamma \eta +\eta \right) +\,2u_{n+1}\gamma \eta +w_{n+1}a\gamma \Big ) \\&\qquad +\,X_{t_n}D_{t_n}\Big (-\lambda \gamma +\frac{2\gamma \varphi }{2q}+\varphi -2b_{n+1}\left( 1-\varphi \right) \gamma +2c_{n+1}e^{-2\rho \tau }\left( 1+\kappa \gamma \right) \kappa \varphi \\&\qquad +\,g_{n+1}e^{-\rho \tau }\left( \left( 1-\varphi \right) \left( 1+\kappa \gamma \right) -\gamma \kappa \varphi \right) -v_{n+1}\left( 2\gamma \varphi -\gamma \right) \\&\qquad +\,s_{n+1}e^{-\rho \tau }\left( 2\kappa \gamma \varphi +\varphi \right) +2u_{n+1}\gamma \varphi \Big )\\&\qquad +\,X_{t_n}F_{t_n}\Big (\varphi +\frac{2\varphi \eta }{2q}-\lambda \eta +a^{N-n}-a^{N-n}\varphi -2b_{n+1}\left( 1-\varphi \right) \eta \\&\qquad +\,2c_{n+1}e^{-2\rho \tau }\kappa ^2\varphi \eta +\,g_{n+1}e^{-\rho \tau }\left( \left( 1-\varphi \right) \kappa \eta -\eta \kappa \varphi \right) +h_{n+1}a\left( 1-\varphi \right) \\&\qquad +\,l_{n+1}e^{-\rho \tau }a\kappa \varphi -v_{n+1}\left( 2\varphi \eta -\eta \right) +\,2s_{n+1}e^{-\rho \tau }\kappa \varphi \eta +2u_{n+1}\varphi \eta +w_{n+1}a\varphi \Big ) \\&\qquad +\,X_{t_n}x_{t_{n-1}}\left( \varphi \frac{\alpha }{2}\right) +D_{t_n}x_{t_{n-1}}\left( \gamma \frac{\alpha }{2}\right) +F_{t_n}x_{t_{n-1}} \left( \eta \frac{\alpha }{2}\right) +x_{t_{n-1}} \left( \varpi \frac{\alpha }{2}\right) \\&\qquad +\Big (\varpi \frac{\beta }{2}+\lambda X_0 \varpi +\frac{\varpi ^2}{2q}-\varpi \frac{\beta }{2}-\lambda X_0 \varpi +b_{n+1}\varpi ^2+c_{n+1}e^{-2\rho \tau }\kappa ^2\varpi ^2\\&\qquad -\,g_{n+1}e^{-\rho \tau }\kappa \varpi ^2 -\,v_{n+1}\varpi ^2+s_{n+1}e^{-\rho \tau }\kappa \varpi ^2+u_{n+1}\varpi ^2\Big ). \end{aligned}$$

For \(D_{t_n}^2\), we obtain:

$$\begin{aligned}&\gamma +\frac{\gamma ^2}{2q}+b_{n+1}\gamma ^2+c_{n+1}e^{-2\rho \tau }\left( 1+\kappa \gamma \right) ^2-g_{n+1}e^{-\rho \tau }\gamma \left( 1+\kappa \gamma \right) -v_{n+1}\gamma ^2 \\&\qquad +\,s_{n+1}e^{-\rho \tau }\left( \kappa \gamma ^2+\gamma \right) +u_{n+1}\gamma ^2 \\&\quad =\, \gamma ^2\left( \frac{1}{2q}+b_{n+1}+\kappa ^2c_{n+1}e^{-2\rho \tau }-g_{n+1}\kappa e^{-\rho \tau }-v_{n+1}+s_{n+1}\kappa e^{-\rho \tau }+u_{n+1}\right) \\&\qquad +\,\gamma \left( 1+2\kappa c_{n+1}e^{-2\rho \tau }-g_{n+1}e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) +c_{n+1}e^{-2\rho \tau } \\&\quad =\, c_{n+1}e^{-2\rho \tau }+\gamma ^2\delta _{n+1}^{-1} +\gamma \left( 1+2\kappa c_{n+1}e^{-2\rho \tau }-g_{n+1}e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\quad =\, c_{n+1}e^{-2\rho \tau }-\frac{1}{4}\delta _{n+1}\left( 1+2\kappa c_{n+1}e^{-2\rho \tau }-g_{n+1}e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) ^2. \end{aligned}$$

For \(X_{t_n}^2\), we obtain:

$$\begin{aligned}& -\lambda \varphi +\frac{\varphi ^2}{2q}+b_{n+1}\left( 1-\varphi \right) ^2+c_{n+1}e^{-2\rho \tau }\kappa ^2\varphi ^2+g_{n+1}e^{-\rho \tau }\left( 1-\varphi \right) \kappa \varphi \\&\qquad -v_{n+1}\left( \varphi ^2-\varphi \right) +\,s_{n+1}e^{-\rho \tau }\kappa \varphi ^2+u_{n+1}\varphi ^2 \\&\quad =\, b_{n+1}+\varphi ^2\Big (\frac{1}{2q}+b_{n+1}+c_{n+1}e^{-2\rho \tau }\kappa ^2-g_{n+1}\kappa e^{-\rho \tau }\\&\qquad \quad -\,v_{n+1}+s_{n+1}e^{-\rho \tau }\kappa +u_{n+1}\Big ) +\varphi \Big (-\lambda -2b_{n+1}+g_{n+1}\kappa e^{-\rho \tau }+v_{n+1}\Big )\\&\quad =\, b_{n+1}+\varphi ^2\delta _{n+1}^{-1}+\varphi \left( -\lambda -2b_{n+1}+g_{n+1}\kappa e^{-\rho \tau }+v_{n+1}\right) \\&\quad =\, b_{n+1}-\frac{1}{4}\delta _{n+1}\left( -\lambda -2b_{n+1}+g_{n+1}\kappa e^{-\rho \tau }+v_{n+1}\right) ^2. \end{aligned}$$

For \(F_{t_n}^2\), we obtain:

$$\begin{aligned}&\eta +\frac{\eta ^2}{2q}-a^{N-n}\eta +b_{n+1}\eta ^2+c_{n+1}e^{-2\rho \tau }\kappa ^2\eta ^2+d_{n+1}m-g_{n+1}e^{-\rho \tau }\kappa \eta ^2\\&\qquad -\,h_{n+1}a\eta +l_{n+1}e^{-\rho \tau }a\kappa \eta -v_{n+1}\eta ^2+s_{n+1}e^{-\rho \tau }\kappa \eta ^2+u_{n+1}\eta ^2+w_{n+1}a\eta \\&\quad =\, d_{n+1}m+\eta ^2\Bigg (\frac{1}{2q}+b_{n+1}+c_{n+1}e^{-2\rho \tau }\kappa ^2-g_{n+1}e^{-\rho \tau }\kappa -v_{n+1}\\&\qquad +\,s_{n+1}e^{-\rho \tau }\kappa +u_{n+1}\Bigg ) +\eta \left( 1-a^{N-n}-h_{n+1}a+l_{n+1}e^{-\rho \tau }a\kappa +w_{n+1}a\right) \\&\quad =\,d_{n+1}m+\eta ^2\delta _{n+1}^{-1}+\eta \left( 1-a^{N-n}-h_{n+1}a+l_{n+1}e^{-\rho \tau }a\kappa +w_{n+1}a\right) \\&\quad =\,d_{n+1}m-\frac{1}{4}\delta _{n+1}\left( 1-a^{N-n}-h_{n+1}a+l_{n+1}e^{-\rho \tau }a\kappa +w_{n+1}a\right) ^2. \end{aligned}$$

For \(F_{t_n}D_{t_n}\), we obtain:

$$\begin{aligned}&\gamma +\frac{2\gamma \eta }{2q}+\eta -a^{N-n}\gamma +2b_{n+1}\gamma \eta +2c_{n+1}e^{-2\rho \tau }\left( 1+\kappa \gamma \right) \kappa \eta \\&\qquad -\,g_{n+1}e^{-\rho \tau }\left( \kappa \eta \gamma +\eta \left( 1+\kappa \gamma \right) \right) -h_{n+1}a\gamma +l_{n+1}e^{-\rho \tau }a\left( 1+\kappa \gamma \right) -v_{n+1}2\gamma \eta \\&\qquad +\,s_{n+1}e^{-\rho \tau }\left( 2\kappa \gamma \eta +\eta \right) +\,2u_{n+1}\gamma \eta +w_{n+1}a\gamma \\&\quad =\,\gamma \left( 1-a^{N-n}-h_{n+1}a+l_{n+1}\kappa e^{-\rho \tau }a+w_{n+1}a\right) \\&\qquad +\,\eta \left( 1+2c_{n+1}\kappa e^{-2\rho \tau }-g_{n+1}e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) \\&\qquad +\,\gamma \eta 2\left( \frac{1}{2q}{+}b_{n{+}1}{+}c_{n+1}\kappa ^2 e^{-2\rho \tau }-g_{n+1}\kappa e^{-\rho \tau }-v_{n{+}1}{+}s_{n{+}1}\kappa e^{-\rho \tau }+u_{n+1}\right) \\&\qquad +\, l_{n+1}e^{-\rho \tau }a \\&\quad =\, l_{n+1}e^{-\rho \tau }a -\,\frac{1}{2}\delta _{n+1}\left( 1-a^{N-n}-h_{n+1}a+l_{n+1}\kappa e^{-\rho \tau }a+w_{n+1}a\right) \\&\qquad \times \left( 1+2c_{n+1}\kappa e^{-2\rho \tau }-\,g_{n+1}e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) . \end{aligned}$$

For \(F_{t_n}X_{t_n}\), we obtain:

$$\begin{aligned}&\varphi +\frac{2\varphi \eta }{2q}-\lambda \eta +a^{N-n}-a^{N-n}\varphi -2b_{n+1}\left( 1-\varphi \right) \eta +2c_{n+1}e^{-2\rho \tau }\kappa ^2\varphi \eta \\&\qquad +\,g_{n+1}e^{-\rho \tau }\left( \left( 1-\varphi \right) \kappa \eta -\eta \kappa \varphi \right) +h_{n+1}a\left( 1-\varphi \right) +l_{n+1}e^{-\rho \tau }a\kappa \varphi \\&\qquad -\,v_{n+1}\left( 2\varphi \eta -\eta \right) +2s_{n+1}e^{-\rho \tau }\kappa \varphi \eta +2u_{n+1}\varphi \eta +w_{n+1}a\varphi \\&\quad =\, a^{N-n}+h_{n+1}a -\,\frac{1}{2}\delta _{n+1}\left( -\lambda -2b_{n+1}+g_{n+1} e^{-\rho \tau }\kappa +v_{n+1}\right) \\&\qquad \times \left( 1-a^{N-n}-h_{n+1}a+\,l_{n+1}\kappa e^{-\rho \tau }a+w_{n+1}a\right) . \end{aligned}$$

For \(D_{t_n}X_{t_n}\), we obtain:

$$\begin{aligned}&-\lambda \gamma +\frac{2\gamma \varphi }{2q}+\varphi -2b_{n+1}\left( 1-\varphi \right) \gamma +2c_{n+1}e^{-2\rho \tau }\left( 1+\kappa \gamma \right) \kappa \varphi +g_{n+1}e^{-\rho \tau } \\&\qquad \times \, \Big (\left( 1\!-\!\varphi \right) \left( 1\!+\!\kappa \gamma \right) \!-\!\gamma \kappa \varphi \Big )\!-\!v_{n+1}\left( 2\gamma \varphi -\gamma \right) \!+\!s_{n+1}e^{-\rho \tau }\left( 2\kappa \gamma \varphi \!+\!\varphi \right) \!+\!2u_{n+1}\gamma \varphi \\&\quad =\, g_{n+1}e^{-\rho \tau } -\frac{1}{2}\delta _{n+1}\left( -\lambda -2b_{n+1}+g_{n+1} e^{-\rho \tau }\kappa +v_{n+1}\right) \\&\quad \quad \times \left( 1+c_{n+1}2\kappa e^{-2\rho \tau }-\,g_{n+1} e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) . \end{aligned}$$

For \(D_{t_n}\) and \(D_{t_n}x_{t_{n-1}}\), we obtain:

$$\begin{aligned}&x_{t_{n-1}}\left( \gamma \frac{\alpha }{2}\right) +\gamma \frac{\beta }{2}+\lambda X_0 \gamma +\frac{2\gamma \varpi }{2q}+\varpi -\gamma \frac{\beta }{2}-\lambda X_0 \gamma +2b_{n+1}\gamma \varpi \\&\qquad +\,2c_{n+1}e^{-2\rho \tau }\left( 1+\kappa \gamma \right) \kappa \varpi -g_{n+1}e^{-\rho \tau }\left( \kappa \varpi \gamma +\varpi \left( 1+\kappa \gamma \right) \right) -v_{n+1}2\gamma \varpi \\&\qquad +\,s_{n+1}e^{-\rho \tau }\left( 2\kappa \gamma \varpi +\varpi \right) +2u_{n+1}\gamma \varpi \\&\quad = -\frac{1}{2}\delta _{n+1}\frac{\alpha x_{t_{n-1}}}{2}\left( 1+c_{n+1}2\kappa e^{-2\rho \tau }-g_{n+1} e^{-\rho \tau }+s_{n+1}e^{-\rho \tau }\right) . \end{aligned}$$

For \(X_{t_n}\) and \(X_{t_n}x_{t_{n-1}}\), we obtain:

$$\begin{aligned}&x_{t_{n-1}} \left( \varphi \frac{\alpha }{2}\right) +\varphi \frac{\beta }{2}+\lambda X_0\varphi +\frac{2\varphi \varpi }{2q}-\lambda \varpi +\frac{\beta }{2}-\varphi \frac{\beta }{2}+\lambda X_0-\lambda X_0\varphi \\&\qquad -\,2b_{n+1}\left( 1-\varphi \right) \varpi +2c_{n+1}e^{-2\rho \tau }\kappa ^2\varphi \varpi +\,g_{n+1}e^{-\rho \tau }\left( \left( 1-\varphi \right) \kappa \varpi -\varpi \kappa \varphi \right) \\&\qquad -\,v_{n+1}\left( 2\varphi \varpi -\varpi \right) +2s_{n+1}e^{-\rho \tau }\kappa \varphi \varpi +2u_{n+1}\varphi \varpi \\&\quad =\, \lambda X_0+\frac{\beta }{2}-\frac{1}{2}\delta _{n+1}\frac{\alpha x_{t_{n-1}}}{2}\left( -\lambda -2b_{n+1}+g_{n+1} e^{-\rho \tau }\kappa +v_{n+1}\right) . \end{aligned}$$

For \(F_{t_n}\) and \(F_{t_n}x_{t_{n-1}}\), we obtain:

$$\begin{aligned}&x_{t_{n-1}} \left( \eta \frac{\alpha }{2}\right) +\eta \frac{\beta }{2}+\lambda X_0 \eta +\frac{2\eta \varpi }{2q}+\varpi -a^{N-n}\varpi -\eta \frac{\beta }{2}-\lambda X_0 \eta \\&\qquad +\,2b_{n+1}\eta \varpi \!+\!2c_{n+1}e^{-2\rho \tau }\kappa ^2\eta \varpi {-}2g_{n{+}1}e^{-\rho \tau }\kappa \eta \varpi -h_{n+1}a\varpi \!+\!l_{n{+}1}e^{-\rho \tau }a\kappa \varpi \\&\qquad -\,v_{n+1}2\eta \varpi +2s_{n+1}e^{-\rho \tau }\kappa \eta \varpi +2u_{n+1}\eta \varpi +w_{n+1}a\varpi \\&=\, -\frac{1}{2}\delta _{n+1}\frac{\alpha x_{t_{n-1}}}{2}\left( 1-a^{N-n}-h_{n+1}a+l_{n+1}\kappa e^{-\rho \tau }a+w_{n+1}a\right) . \end{aligned}$$

For the remainder, we obtain:

$$\begin{aligned}&\Bigg (\varpi \frac{\beta }{2}+\lambda X_0 \varpi +\frac{\varpi ^2}{2q}-\varpi \frac{\beta }{2}-\lambda X_0 \varpi +b_{n+1}\varpi ^2+c_{n+1}e^{-2\rho \tau }\kappa ^2\varpi ^2\\&\qquad -\,g_{n+1}e^{-\rho \tau }\kappa \varpi ^2-v_{n+1}\varpi ^2+s_{n+1}e^{-\rho \tau }\kappa \varpi ^2+u_{n+1}\varpi ^2\Bigg )+x_{t_{n-1}} \left( \varpi \frac{\alpha }{2}\right) \\&\quad =\, \frac{1}{4}\delta _{n+1}\left( \frac{\alpha ^2 x_{t_{n-1}}^2}{4}\right) -\frac{1}{2}\delta _{n+1}\left( \frac{\alpha ^2 x_{t_{n-1}}^2}{4}\right) \\&\quad = -\frac{1}{4}\delta _{n+1}\left( \frac{\alpha ^2 x_{t_{n-1}}^2}{4}\right) . \end{aligned}$$

This proves Eq. 6 and concludes the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, E.W., Kruse, T. & Yu, MT. Financial Transaction Tax: Policy Analytics Based on Optimal Trading. Comput Econ 46, 103–141 (2015). https://doi.org/10.1007/s10614-014-9473-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10614-014-9473-4

Keywords

JEL Classification

Navigation