Skip to main content
Log in

Computing the Ramsey number R(4,3,3) using abstraction and symmetry breaking

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

The number R(4, 3, 3) is often presented as the unknown Ramsey number with the best chances of being found “soon”. Yet, its precise value has remained unknown for almost 50 years. This paper presents a methodology based on abstraction and symmetry breaking that applies to solve hard graph edge-coloring problems. The utility of this methodology is demonstrated by using it to compute the value R(4, 3, 3) = 30. Along the way it is required to first compute the previously unknown set \(\mathcal {R}(3,3,3;13)\) consisting of 78,892 Ramsey colorings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. Note that nauty does not directly handle edge colored graphs and weak isomorphism directly. We applied an approach called k-layering described by Derrick Stolee [23].

References

  1. Ahmed, T. (2011). On computation of exact ven der Waerden numbers. Integers, 11.

  2. Appel, K., & Haken, W. (1976). Every map is four colourable. Bulletin of the American Mathematical Society, 82, 711–712.

    Article  MathSciNet  MATH  Google Scholar 

  3. Codish, M., Miller, A., Prosser, P., & Stuckey, P.J. (2013). Breaking symmetries in graph representation. In Rossi, F. (Ed.), Proceedings of the 23rd International Joint Conference on Artificial Intelligence, Beijing, China. IJCAI/AAAI. http://www.aaai.org/ocs/index.php/IJCAI/IJCAI13/paper/view/6480.

  4. Codish, M., Miller, A., Prosser, P., & Stuckey, P.J. (2014). Constraints for symmetry breaking in graph representation. Full version of [3] (in preparation).

  5. Dransfeld, M.R., Liu, L., Marek, V., & Truszczyński, M. (2004). Satisfiability and computing van der Waerden numbers. The Electronic Journal of Combinatorics, 11.

  6. Erdös, P., & Gallai, T. (1960). Graphs with prescribed degrees of vertices (in Hungarian). Matematicas Lapok (pp. 264–274). Available from http://www.renyi.hu/p_erdos/1961-05.pdf.

  7. Fettes, S.E., Kramer, R.L., & Radziszowski, S.P. (2004). An upper bound of 62 on the classical Ramsey number r(3, 3, 3, 3). Ars Combinatorics, 72.

  8. Herwig, P.R., Van Lambalgen, P.M., & Van Maaren, H. (2004). A new method to construct lower bounds for van der Waerden numbers. The Electronic Journal of Combinatorics, 14.

  9. Heule, M. Jr., Warren A. Hunt, Jr., & Wetzler, N. (2014). Bridging the gap between easy generation and efficient verification of unsatisfiability proofs. Software Testing, Verification Reliability, 24(8), 593–607. doi:10.1002/stvr.1549.

    Article  Google Scholar 

  10. Kalbfleisch, J.G. (1966). Chromatic graphs and Ramsey’s theorem. Ph.D. thesis, University of Waterloo.

  11. Kouril, M. (2012). Computing the van der Waerden number w(3, 4) = 293. Integers, 12.

  12. McKay, B. (1990). Nauty user’s guide (version 1.5). Technical Report TR-CS-90-02, Australian National University, Computer Science Department.

  13. McKay, B.D., & Radziszowski, S.P. (1995). R(4, 5) = 25. Journal of Graph Theory, 19(3), 309–322. doi:10.1002/jgt.3190190304.

    Article  MathSciNet  MATH  Google Scholar 

  14. McMillan, K.L. (2002). Applying SAT methods in unbounded symbolic model checking. In Brinksma, E. & Larsen, K.G. (Ed.), Computer Aided Verification, 14th International Conference, Proceedings, Lecture Notes in Computer Science (Vol. 2404, pp. 250–264). Springer. 10.1007/3-540-45657-0_19.

  15. Metodi, A., Codish, M., & Stuckey, P. J. (2013). Boolean equi-propagation for concise and efficient SAT encodings of combinatorial problems. Journal of Artificial Intelligence Research (JAIR), 46, 303–341.

    MathSciNet  MATH  Google Scholar 

  16. Miller, A., & Prosser, P. (2012). Diamond-free degree sequences. Acta Universitatis Sapientiae Informatica, Scienta Publishing House, 4(2), 189–200.

    MATH  Google Scholar 

  17. Piwakowski, K. (1997). On Ramsey number r(4, 3, 3) and triangle-free edge-chromatic graphs in three colors. Discrete Mathematics, 164(1-3), 243–249. doi:10.1016/S0012-365X(96)00057-X.

    Article  MathSciNet  MATH  Google Scholar 

  18. Piwakowski, K., & Radziszowski, S.P. (1998). 30r(3,3,4)31. Journal of Combinatorial Mathematics and Combinatorial Computing, 27, 135–141.

    MathSciNet  MATH  Google Scholar 

  19. Piwakowski, K., & Radziszowski, S.P. (2001). Towards the exact value of the Ramsey number R(3, 3, 4). In Proceedings of the 33rd Southeastern International Conference on Combinatorics, Graph Theory, and Computing (Vol. 148, pp. 161–167). Congressus Numerantium. http://www.cs.rit.edu/spr/PUBL/paper44.pdf.

  20. Radziszowski, S.P. (2015). Personal communication January.

  21. Radziszowski, S.P. (2014). Small Ramsey numbers. Electronic Journal of Combinatorics (1994). http://www.combinatorics.org/ Revision #14: January.

  22. Soos, M. (2010). CryptoMiniSAT, v2, 5, 1. http://www.msoos.org/cryptominisat2.

    Google Scholar 

  23. Stolee, D. Canonical labelings with nauty. Computational Combinatorics (Blog) (2012). http://computationalcombinatorics.wordpress.com (viewed October 2015).

  24. Wetzler, N., Heule, M. Jr., & Warren A. Hunt, Jr. (2014). Drat-trim: Efficient checking and trimming using expressive clausal proofs. In Sinz, C. & Egly, U. (Ed.), Theory and Applications of Satisfiability Testing, 17th International Conference, Proceedings, Lecture Notes in Computer Science (Vol. 8561, pp. 422–429). Springer.doi:10.1007/978-3-319-09284-3_31.

  25. Xu, X., & Radziszowski, S.P. (2015). On some open questions for Ramsey and Folkman numbers. Graph Theory, Favorite Conjectures and Open Problems. (to appear).

Download references

Acknowledgments

We thank Stanislaw Radziszowski for his guidance and comments which helped improve the presentation of this paper. In particular Stanislaw proposed to show that our technique is able to find the (4, 3, 3; 29) coloring depicted as Fig. 4.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Codish.

Additional information

Supported by the Israel Science Foundation, grant 182/13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Codish, M., Frank, M., Itzhakov, A. et al. Computing the Ramsey number R(4,3,3) using abstraction and symmetry breaking. Constraints 21, 375–393 (2016). https://doi.org/10.1007/s10601-016-9240-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-016-9240-3

Keywords

Navigation