Skip to main content
Log in

Structural decompositions for problems with global constraints

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

A wide range of problems can be modelled as constraint satisfaction problems (CSPs), that is, a set of constraints that must be satisfied simultaneously. Constraints can either be represented extensionally, by explicitly listing allowed combinations of values, or implicitly, by special-purpose algorithms provided by a solver. Such implicitly represented constraints, known as global constraints, are widely used; indeed, they are one of the key reasons for the success of constraint programming in solving real-world problems. In recent years, a variety of restrictions on the structure of CSP instances have been shown to yield tractable classes of CSPs. However, most such restrictions fail to guarantee tractability for CSPs with global constraints. We therefore study the applicability of structural restrictions to instances with such constraints. We show that when the number of solutions to a CSP instance is bounded in key parts of the problem, structural restrictions can be used to derive new tractable classes. Furthermore, we show that this result extends to combinations of instances drawn from known tractable classes, as well as to CSP instances where constraints assign costs to satisfying assignments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, I. (2006). Width functions for hypertree decompositions. Doctoral dissertation, Albert-Ludwigs-Universität Freiburg.

  2. Adler, I., Gottlob, G., Grohe, M. (2007). Hypertree width and related hypergraph invariants. European Journal of Combinatorics, 28(8), 2167–2181. doi:10.1016/j.ejc.2007.04.013. http://www.sciencedirect.com/science/article/pii/S0195669807000753.

    Article  MathSciNet  MATH  Google Scholar 

  3. Aschinger, M., Drescher, C., Friedrich, G., Gottlob, G., Jeavons, P., Ryabokon, A., Thorstensen, E. (2011). Optimization methods for the partner units problem. In Proceedings of the 8th International Conference on Integration of Artificial Intelligence and Operations Research Techniques in Constraint Programming for Combinatorial Optimization Problems (CPAIOR’11), Lecture Notes in Computer Science, (Vol. 6697 pp. 4–19). Berlin: Springer.

  4. Aschinger, M., Drescher, C., Gottlob, G., Jeavons, P., Thorstensen, E. (2011). Structural decomposition methods and what they are good for. In Schwentick, T., & Dürr, C. (Eds.) Proceedings of the 28th International Symposium on Theoretical Aspects of Computer Science (STACS’11), Leibniz International Proceedings in Informatics, (Vol. 9 pp. 12–28). doi:10.4230/LIPIcs.STACS.2011.12. http://drops.dagstuhl.de/opus/volltexte/2011/2996.

  5. Atserias, A., Grohe, M., Marx, D. (2013). Size bounds and query plans for relational joins. SIAM Journal on Computing, 42(4), 1737–1767. doi:10.1137/110859440.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bessiere, C., Hebrard, E., Hnich, B., Walsh, T. (2007). The complexity of reasoning with global constraints. Constraints, 12(2), 239–259. doi:10.1007/s10601-006-9007-3.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bessiere, C., Katsirelos, G., Narodytska, N., Quimper, C.G., Walsh, T. (2010). Decomposition of the NValue constraint. In Proceedings of the 16th International Conference on Principles and Practice of Constraint Programming (CP’10), Lecture Notes in Computer Science, (Vol. 6308) . Berlin: Springer.

  8. Bulatov, A., Jeavons, P., Krokhin, A. (2005). Classifying the complexity of constraints using finite algebras. SIAM Journal on Computing, 34(3), 720–742. doi:10.1137/S0097539700376676 . http://link.aip.org/link/?SMJ/34/720/1.

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, H., & Grohe, M. (2010). Constraint satisfaction with succinctly specified relations. Journal of Computer and System Sciences, 76(8), 847–860. doi:10.1016/j.jcss.2010.04.003. http://www.sciencedirect.com/science/article/pii/S0022000010000450.

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohen, D., & Green, M. (2006). Typed guarded decompositions for constraint satisfaction. In Benhamou, F. (Ed.) Proceedings of the 12th International Conference on the Principles and Practice of Constraint Programming (CP’06), Lecture Notes in Computer Science, (Vol. 4204 PP. 122–136). Berlin: Springer. doi:10.1007/11889205_11.

  11. Cohen, D., & Jeavons, P. (2006). The complexity of constraint languages In Rossi, F, Van Beek, P, Walsh, T (Eds.), Handbook of Constraint Programming, Foundations of Artificial Intelligence (Vol. 2, pp. 245–280). New York: Elsevier. doi:10.1016/S1574-6526(06)80012-X.

    Chapter  Google Scholar 

  12. Cohen, D., Jeavons, P., Gyssens, M. (2008). A unified theory of structural tractability for constraint satisfaction problems. Journal of Computer and System Sciences, 74(5), 721–743. doi:10.1016/j.jcss.2007.08.001. http://www.sciencedirect.com/science/article/pii/S0022000007001225.

    Article  MathSciNet  MATH  Google Scholar 

  13. Cohen, D.A., Green, M.J., Houghton, C. (2009). Constraint representations and structural tractability. In Proceedings of the 15th International Conference on Principles and Practice of Constraint Programming (CP’09), Lecture Notes in Computer Science, (Vol. 5732. pp. 289–303). Berlin: Springer.

  14. Cohen, D.A., Jeavons, P.G., Thorstensen, E., živný, S. (2013). Tractable combinations of global constraints In Schulte, C (Ed.), Proceedings of the 19th International Conference on Principles and Practice of Constraint Programming (CP’13), Lecture Notes in Computer Science (Vol. 8124, pp. 230–246). Berlin: Springer.

    Google Scholar 

  15. Dalmau, V., Kolaitis, P.G., Vardi, M.Y. (2002). Constraint satisfaction, bounded treewidth, and finite-variable logics. In Proceedings of the 8th International Conference on Principles and Practice of Constraint Programming (CP’02), Lecture Notes in Computer Science, (Vol. 2470. pp. 223–254). Berlin: Springer. http://dl.acm.org/citation.cfm?id=647489.727145.

  16. Downey, R.G., & Fellows, M.R. (1999). Parameterized complexity. Monographs in computer science. Berlin: Springer.

    Book  Google Scholar 

  17. Flum, J., & Grohe, M. (2006). Parameterized complexity theory. Texts in theoretical computer science. Berlin: Springer.

    Google Scholar 

  18. Garey, M.R., & Johnson, D.S. (1979). Computers and intractability: A guide to the theory of NP-Completeness. San Francisco: W. H. Freeman.

    MATH  Google Scholar 

  19. Gaspers, S., & Szeider, S. (2012). Backdoors to satisfaction In Bodlaender, HL, Downey, R, Fomin, FV, Marx, D (Eds.), The multivariate algorithmic revolution and beyond, Lecture Notes in Computer Science (Vol. 7370, pp. 287–317). Berlin: Springer. doi:10.1007/978-3-642-30891-8_15.

    Google Scholar 

  20. Gent, I.P., Jefferson, C., Miguel, I. (2006). MINION: A fast, scalable constraint solver. In Proceedings of the 17th European Conference on Artificial Intelligence (ECAI’06). (pp. 98–102). Amsterdam: IOS Press. http://dl.acm.org/citation.cfm?id= 1567016.1567043.

  21. de Givry, S., Schiex, T., Verfaillie, G. (2006). Exploiting Tree Decomposition and Soft Local Consistency in Weighted CSP. In Proceedings of the 21st National Conference on Artificial Intelligence (AAAI’06). (pp. 22–27).

  22. Gottlob, G., Greco, G., Scarcello, F. (2009). Tractable optimization problems through hypergraph-based structural restrictions In Albers, S, Marchetti-Spaccamela, A, Matias, Y, Nikoletseas, S, Thomas, W (Eds.), Proceedings of the 36th International Colloquium on Automata Languages and Programming (ICALP’09), Lecture Notes in Computer Science, (Vol. 5556, pp. 16–30). Berlin: Springer. doi:10.1007/978-3-642-02930-1_2.

    Google Scholar 

  23. Gottlob, G., Leone, N., Scarcello, F. (2000). A comparison of structural CSP decomposition methods. Artificial Intelligence, 124(2), 243–282.

    Article  MathSciNet  MATH  Google Scholar 

  24. Gottlob, G., Leone, N., Scarcello, F. (2002). Hypertree decompositions and tractable queries. Journal of Computer and System Sciences, 64(3), 579–627. doi:10.1006/jcss.2001.1809.

    Article  MathSciNet  MATH  Google Scholar 

  25. Green, M.J., & Jefferson, C. (2008). Structural tractability of propagated constraints. In Proceedings of the 14th International Conference on Principles and Practice of Constraint Programming (CP’08), Lecture Notes in Computer Science, (Vol. 5202. pp. 372–386). Berlin: Springer. doi:10.1007/978-3-540-85958-1_25.

  26. Grohe, M. (2007). The complexity of homomorphism and constraint satisfaction problems seen from the other side. Journal of the ACM, 54(1), 1–24. doi:10.1145/1206035.1206036.

    Article  MathSciNet  Google Scholar 

  27. Grohe, M., & Marx, D. (2006). Constraint solving via fractional edge covers. In Proceedings of the 17th ACM-SIAM symposium on discrete algorithms (SODA’06). (pp. 289–298): ACM. doi:10.1145/1109557.1109590.

  28. Hermenier, F., Demassey, S., Lorca, X. (2011). Bin repacking scheduling in virtualized datacenters. In Lee, J (Ed.) Proceedings of the 17th International Conference on Principles and Practice of Constraint Programming (CP’11), Lecture Notes in Computer Science, (Vol. 6876. pp. 27–41). Berlin: Springer. doi:10.1007/978-3-642-23786-7_5.

  29. van Hoeve, W.J., & Katriel, I. (2006). Global constraints. In Rossi, F, Van Beek, P, Walsh, T (Eds.) Handbook of Constraint Programming, Foundations of Artificial Intelligence, (Vol. 2 . pp. 169–208). New York: Elsevier. doi:10.1016/S1574-6526(06)80010-6, http://www.sciencedirect.com/science/article/B8G6H-4RXCSGY-9/2/4e2eda11a2a06f3925df0334d09f0e1b.

  30. Kutz, M., Elbassioni, K., Katriel, I., Mahajan, M. (2008). Simultaneous matchings: Hardness and approximation. Journal of Computer and System Sciences, 74(5), 884–897. doi:10.1016/j.jcss.2008.02.001. http://portal.acm.org/citation.cfm?id=1374847.1374923.

    Article  MathSciNet  MATH  Google Scholar 

  31. Marx, D. (2010). Approximating fractional hypertree width. ACM Transactions on Algorithms, 6(2), 29:1–29:17. doi:10.1145/1721837.1721845.

    Article  MathSciNet  Google Scholar 

  32. Marx, D. (2010). Can you beat treewidth Theory of Computing, 6(1), 85–112.

    Article  MathSciNet  Google Scholar 

  33. Marx, D. (2013). Tractable hypergraph properties for constraint satisfaction and conjunctive queries. Journal ACM, 60(6), 42.

    Article  MathSciNet  Google Scholar 

  34. Quimper, C.G., López-Ortiz, A., van Beek, P., Golynski, A. (2004). Improved algorithms for the global cardinality constraint. In Proceedings of the 10th International Conference on Principles and Practice of Constraint Programming (CP’04), Lecture Notes in Computer Science. (Vol. 3258, pp. 542–556). Berlin: Springer. doi:10.1007/978-3-540-30201-8_40.

  35. Régin, J.C. (1996). Generalized Arc Consistency for Global Cardinality Constraint. In Proceedings of the 13th National Conference on Artificial Intelligence (AAAI’96). (pp. 209–215): AAAI Press . http://www.aaai.org/Papers/AAAI/1996/AAAI96-031. pdf.

  36. Rossi, F., van Beek, P., Walsh, T. (2006). The handbook of constraint programming. New York: Elsevier.

    Google Scholar 

  37. Samer, M., & Szeider, S. (2011). Tractable cases of the extended global cardinality constraint. Constraints, 16(1), 1–24. doi:10.1007/s10601-009-9079-y.

    Article  MathSciNet  MATH  Google Scholar 

  38. Schiex, T., Fargier, H., Verfaillie, G. (1995). Valued Constraint Satisfaction Problems: Hard and Easy Problems In Mellish, C (Ed.), Proceedings of the 14th International Joint Conference on Artificial Intelligence (IJCAI’95), (pp. 631–639).

  39. Wallace, M. (1996). Practical applications of constraint programming. Constraints, 1, 139–168.

    Article  MathSciNet  Google Scholar 

  40. Wallace, M., Novello, S., Schimpf, J. (1997). ECLiPSe: A platform for constraint logic programming. ICL Systems Journal, 12(1), 137–158.

    Google Scholar 

  41. Williams, R., Gomes, C.P., Selman, B. (2003). Backdoors to typical case complexity. In Proceedings of the 18th International Joint Conference on Artificial Intelligence (IJCAI’03). (pp. 1173–1178).

  42. żivný, S. (2009). The complexity and expressive power of valued constraints. Doctoral dissertation: University of Oxford.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evgenij Thorstensen.

Additional information

A preliminary version of this paper appeared in Proceedings of the 19th International Conference on Principles and Practice of Constraint Programming (CP 2013).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thorstensen, E. Structural decompositions for problems with global constraints. Constraints 21, 198–222 (2016). https://doi.org/10.1007/s10601-015-9181-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-015-9181-2

Keywords

Navigation