Skip to main content
Log in

A complexity perspective on entailment of parameterized linear constraints

  • Published:
Constraints Aims and scope Submit manuscript

Abstract

Extending linear constraints by admitting parameters allows for more abstract problem modeling and reasoning. A lot of focus has been given to conducting research that demonstrates the usefulness of parameterized linear constraints and implementing tools that utilize their modeling strength. However, there is no approach that considers basic theoretical tools related to such constraints that allow for reasoning over them. Hence, in this paper we introduce satisfiability with respect to polyhedral sets and entailment for the class of parameterized linear constraints. In order to study the computational complexities of these problems, we relate them to classes of quantified linear implications. The problem of satisfiability with respect to polyhedral sets is then shown to be co-\(\mathbb{NP}\) hard. The entailment problem is also shown to be co-\(\mathbb{NP}\) hard in its general form. Nevertheless, we characterize some subclasses for which this problem is in ℙ. Furthermore, we examine a weakening and a strengthening extension of the entailment problem. The weak entailment problem is proved to be \(\mathbb{NP}\) complete. On the other hand, the strong entailment problem is shown to be co-\(\mathbb{NP}\) hard.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adler, I., & Monteiro, R. (1992). A geometric view of parametric linear programming. Algorithmica, 8, 161–176.

    Article  MathSciNet  MATH  Google Scholar 

  2. Basu, S., et al. (1996). On the combinatorial and algebraic complexity of quantifier elimination. Journal of the ACM, 43(6), 1002–1045.

    Article  MathSciNet  MATH  Google Scholar 

  3. Bodirsky, M., & Chen, H. (2009). Relatively quantified constraint satisfaction. Constraints, 14(1), 3–15.

    Article  MathSciNet  MATH  Google Scholar 

  4. Borrelli, F., et al. (2003). Geometric algorithm for multiparametric linear programming. Journal of Optimization Theory and Applications, 118(3), 515–540.

    Article  MathSciNet  MATH  Google Scholar 

  5. Brown, C.W. (2003). QEPCAD B: a program for computing with semi-algebraic sets using CADs. ACM SIGSAM Bullettin, 37(4), 97–108.

    Article  MATH  Google Scholar 

  6. Cachera, D., & Morin-Allory, K. (2005). Verification of safety properties for parameterized regular systems. ACM Transactions on Embedded Computing Systems, 4(2), 228–266.

    Article  Google Scholar 

  7. Cadoli, M., & Schaerf, M. (1996). On the complexity of entailment in propositional multivalued logics. Annals of Mathematics and Artificial Intelligence, 18(1), 29–50.

    Article  MathSciNet  MATH  Google Scholar 

  8. Collins, G.E., & Hong, H. (1991). Partial cylindrical algebraic decomposition for quantifier elimination. Journal of Symbolic Computation, 12(3), 299–328.

    Article  MathSciNet  MATH  Google Scholar 

  9. Colón, M., & Sankaranarayanan, S. (2011). Generalizing the template polyhedral domain. In Proc. of the 20th European Symposium on Programming (ESOP 2011), Lecture notes in computer science (Vol. 6602, pp. 176–195). Springer.

  10. Davenport, J.H., & Heintz, J. (1988). Real quantifier elimination is doubly exponential. Journal of Symbolic Computation, 5(1–2), 29–35.

    Article  MathSciNet  MATH  Google Scholar 

  11. Di Rosa, E., et al. (2010). Solving satisfiability problems with preferences. Constraints, 15(4), 485–515.

    Article  MathSciNet  MATH  Google Scholar 

  12. Dolzmann, A., & Sturm, T. (1997). REDLOG: computer algebra meets computer logic. ACM SIGSAM Bullettin, 31(2), 2–9.

    Article  MathSciNet  Google Scholar 

  13. Dolzmann, A., et al. (1998). A new approach for automatic theorem proving in real geometry. Journal of Automated Reasoning, 21(3), 357–380.

    Article  MathSciNet  MATH  Google Scholar 

  14. Dolzmann, A., et al. (1998). Real quantifier elimination in practice. In B.H. Matzat, G.M. Greuel, G. Hiss, (Eds.), Algorithmic algebra and number theory (pp. 221–248). Springer.

  15. Egly, U., et al. (2009). A solver for QBFs in negation normal form. Constraints, 14(1), 38–79.

    Article  MathSciNet  MATH  Google Scholar 

  16. Eirinakis, P., et al. (2012). Computational complexities of inclusion queries over polyhedral sets. In Int. Symposium on Artif icial Intelligence and Mathematics (ISAIM 2012). Fort Lauderdale, FL.

  17. Gal, T. (1995). Postoptimal analyses, parametric programming, and related topics (2nd ed.). Berlin, Germany: de Gruyter and Co.

    Google Scholar 

  18. Giunchiglia, E., et al. (2004). QuBE+ +: an efficient QBF solver. Formal Methods in Computer-Aided Design, 3312, 201–213.

    Article  Google Scholar 

  19. Goldsztejn, A., et al. (2009). Efficient handling of universally quantified inequalities. Constraints, 14(1), 117–135.

    Article  MathSciNet  MATH  Google Scholar 

  20. Gottlob, G., et al. (2005). The complexity of quantified constraint satisfaction problems under structural restrictions. In L.P. Kaelbling & A. Saffiotti (Eds.), Proc. of Int. Joint Conf. on Artificial Intelligence (IJCAI 2005) (pp. 150–155). Professional Book Center.

  21. Greenberg, H.J. (1996). Consistency, redundancy, and implied equalities in linear systems. Annals of Mathematics and Artificial Intelligence, 17(1–2), 37–83.

    Article  MathSciNet  MATH  Google Scholar 

  22. Ioakimidis, N.I. (2000). Derivation of feasibility conditions in engineering problems under parametric inequality constraints with classical Fourier elimination. International Journal for Numerical Methods in Engineering, 48(11), 1583–1599.

    Article  MathSciNet  MATH  Google Scholar 

  23. Karmarkar, N.K. (1984). A new polynomial–time algorithm for linear programming. In Proceedings of the 16th annual ACM symposium on theory of computing (pp. 302–311).

  24. Keerthi, S.S., & Sridharan, K. (1990). Solution of parameterized linear inequalities by Fourier elimination and its applications. Journal of Optimization Theory and Applications, 65(1), 161–169.

    Article  MathSciNet  MATH  Google Scholar 

  25. Khachiyan, L.G. (1979). A polynomial algorithm in linear programming. Doklady Akademiia Nauk SSSR, 224, 1093–1096 (English Translation: Soviet Mathematics Doklady, 20, 1093–1096).

    MathSciNet  Google Scholar 

  26. Kvasnica, M. (2009). Real-time model predictive control via multi-parametric programming: Theory and tools. VDM Verlag.

  27. Kvasnica, M., et al. (2011). Multi-Parametric Toolbox. Available at http://control.ee.ethz.ch/~mpt.

  28. Le Berre, D., et al. (2004). Challenges in the QBF arena: the SAT’03 evaluation of QBF solvers. In Proc. of the 6th int. conf. on theory and applications of satisfiability testing (SAT 2003). Lecture notes in computer science (Vol. 2919, pp. 468–485). Springer.

  29. Loechner, V. (2011). Polylib: a library for manipulating parameterized polyhedra. Available at http://icps.u-strasbg.fr/polylib.

  30. Loechner, V., & Wilde, D.K. (1997). Parameterized polyhedra and their vertices. International Journal of Parallel Programming, 25, 525–549.

    Article  Google Scholar 

  31. Murty, K.G. (1980). Computational complexity of parametric linear programming. Mathematical Programming, 19, 213–219.

    Article  MathSciNet  MATH  Google Scholar 

  32. Murty, K.G. (1983). Linear programming. Hoboken, NJ, USA: Wiley.

    MATH  Google Scholar 

  33. Pistikopoulos, E.N., et al. (2007). Multi-parametric model-based control: Theory and applications, Process systems engineering series (Vol. 2). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  34. Pistikopoulos, E.N., et al. (2007). Multi-parametric programming: Theory, algorithms and applications, process systems engineering series (Vol. 1). Weinheim: Wiley-VCH.

    Book  Google Scholar 

  35. Pulina, L., & Tacchella, A. (2009). A self-adaptive multi-engine solver for quantified boolean formulas. Constraints, 14(1), 80–116.

    Article  MathSciNet  MATH  Google Scholar 

  36. Ratschan, S. (2006). Efficient solving of quantified inequality constraints over the real numbers. ACM Transactions on Computational Logic, 7(4), 723–748.

    Article  MathSciNet  Google Scholar 

  37. Ratschan, S. (2011). RSOLVER. Available at http://rsolver.sourceforge.net.

  38. Renegar, J. (1992). On the computational complexity and geometry of the first-order theory of the reals. Journal of Symbolic Computation, 13(3), 255–352.

    Article  MathSciNet  MATH  Google Scholar 

  39. Ruggieri, S., & Mesnard, F. (2010). Typing linear constraints. ACM Transactions on Programming Languages and Systems, 32(6), Article 21. doi:10.1145/1749608.1749610.

  40. Schechter, M. (1987). Polyhedral functions and multiparametric linear programming. Journal of Optimization Theory and Applications, 53(2), 269–280.

    Article  MathSciNet  MATH  Google Scholar 

  41. Schrijver, A. (1987). Theory of linear and integer programming. New York: Wiley.

    Google Scholar 

  42. Solares, C., & Chaves, E.W.V. (2008). Feasibility conditions in engineering problems involving a parametric system of linear inequalities. In Advances in mathematical and statistical modeling. Statistics for industry and technology (pp. 331–340). Birkhuser Boston.

  43. Sontag, E.D. (1985). Real addition and the polynomial hierarchy. Information Processing Letters, 20(3), 115–120.

    Article  MathSciNet  MATH  Google Scholar 

  44. Stynes, D., & Brown, K.N. (2009). Value ordering for quantified CSPs. Constraints, 14(1), 16–37.

    Article  MathSciNet  MATH  Google Scholar 

  45. Subramani, K. (2002). An analysis of zero-clairvoyant scheduling. In J.P. Katoen & P. Stevens (Eds.), Proceedings of the 8th international conference on tools and algorithms for the construction of Systems (TACAS). Lecture notes in computer science (Vol. 2280, pp. 98–112). Springer.

  46. Subramani, K. (2005). An analysis of totally clairvoyant scheduling. Journal of Scheduling, 8(2), 113–133.

    Article  MathSciNet  MATH  Google Scholar 

  47. Subramani, K. (2005). Tractable fragments of presburger arithmetic. Theory of Computing Systems, 38(5), 647–668.

    Article  MathSciNet  MATH  Google Scholar 

  48. Subramani, K. (2007). On a decision procedure for quantified linear programs. Annals of Mathematics and Artificial Intelligence, 51(1), 55–77.

    Article  MathSciNet  MATH  Google Scholar 

  49. Subramani, K. (2009). On the complexity of selected satisfiability and equivalence queries over boolean formulas and inclusion queries over hulls. Journal of Applied Mathematics and Decision Sciences (JAMDS), 2009, 1–18

    Article  Google Scholar 

  50. Vaidya, P.M. (1987). An algorithm for linear programming which requires O(((m + n)n 2 + (m + n)1.5 n)L) arithmetic operations. In A. Aho (Ed.), Proceedings of the 19th annual ACM symposium on theory of computing (pp. 29–38). New York: ACM Press.

    Google Scholar 

  51. Weispfenning, V. (1988). The complexity of linear problems in fields. Journal of Symbolic Computation, 4(1–2), 3–27.

    Article  MathSciNet  Google Scholar 

  52. Willner, L. (1967). On parametric linear programming. SIAM Journal on Applied Mathematics, 15(5), 1253–1257.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavlos Eirinakis.

Additional information

This research was supported in part by the National Science Foundation through Award CCF-0827397 and Award CNS-0849735.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eirinakis, P., Ruggieri, S., Subramani, K. et al. A complexity perspective on entailment of parameterized linear constraints. Constraints 17, 461–487 (2012). https://doi.org/10.1007/s10601-012-9127-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10601-012-9127-x

Keywords

Navigation