Skip to main content
Log in

Numerical modeling of non-Newtonian fluid flow in fractures and porous media

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Non-Newtonian fluids having Bingham or power-law rheology are common in many applications within drilling and reservoir engineering. Examples of such fluids are drilling muds, foams, heavy oil, hydraulic-fracturing and other stimulation fluids, and cement slurries. Despite the importance of non-Newtonian rheology, it is rarely used in reservoir simulators and fracture flow simulations. We study two types of non-Newtonian rheology: the truncated power-law (Ostwald-de Waele) fluid and the Bingham fluid. For either of the two types of non-Newtonian rheology, we construct relationships between the superficial fluid velocity and the pressure gradient in fractures and porous media. The Bingham fluid is regularized by means of Papanastasiou-type regularization for porous media and by means of a simple hyperbolic function for fracture flow. Approximation by Taylor expansion is used to evaluate the fluid velocity for small pressure gradients to reduce rounding errors. We report simulations of flow in rough-walled fractures for different rheologies and study the effect of fluid parameters on the flow channelization in rough-walled fractures. This effect is known from previous studies. We demonstrate how rheologies on different domains can be included in a fully-unstructured reservoir simulation that incorporates discrete fracture modeling (DFM). The above formulation was implemented in the open-source MATLAB Reservoir Simulation Toolbox (MRST), which uses fully implicit discretization on general polyhedral grids, including industry standard grids with DFM. This robust implementation is an important step towards hydro-mechanically coupled simulation of hydraulic fracturing with realistic non-Newtonian fluid rheology since most hydraulic fracturing models implemented so far make use of oversimplified rheological models (e.g., Newtonian or pure power-law).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alassi, H.T.: Modeling Reservoir Geomechanics Using Discrete Element Method: Application to Reservoir Monitoring, Ph.D. thesis, Norwegian University of Science and Technology (NTNU (2008)

  2. Auradou, H., Boschan, A., Chertcoff, R., Angelo, M.V., Hulin, J.P., Ippolito, I.: Miscible transfer of solute in different model fractures: From random to multiscale wall roughness. Compt. Rendus Geosci. 342(7), 644–652 (2010)

    Article  Google Scholar 

  3. Auradou, H., Boschan, A., Chertcoff, R., Gabbanelli, S., Hulin, J., Ippolito, I.: Enhancement of velocity contrasts by shear-thinning solutions flowing in a rough fracture. J. Non-Newtonian Fluid Mech. 153(1), 53–61 (2008)

    Article  Google Scholar 

  4. Balhoff, M., Sanchez-Rivera, D., Kwok, A., Mehmani, Y., Prodanovic, M.: Numerical algorithms for network modeling of yield stress and other non-newtonian fluids in porous media. Transp. Porous Media 93(3), 363–379 (2012)

    Article  Google Scholar 

  5. Bird, R., Armstrong, R., Hassager, O.: Dynamics of Polymer Liquids. Wiley, New York (1987)

    Google Scholar 

  6. Brown, S.R.: Fluid flow through rock joints: the effect of surface roughness. J. Geophys. Res. Solid Earth 92 (B2), 1337–1347 (1987)

    Article  Google Scholar 

  7. Carreau, P.J.: Rheological equations from molecular network theories. Trans. Soc. Rheol. (1957-1977) 16(1), 99–127 (1972)

    Article  Google Scholar 

  8. Darby, R.: Chemical Engineering Fluid Mechanics, 2nd Edition. CRC Press, New York (2001)

    Google Scholar 

  9. Duda, A., Koza, Z., Matyka, M.: Hydraulic tortuosity in arbitrary porous media flow. Phys. Rev. E 84 (3), 036,319 (2011)

    Article  Google Scholar 

  10. Frigaard, I., Nouar, C.: On the usage of viscosity regularisation methods for visco-plastic fluid flow computation. J. Non-Newtonian Fluid Mech. 127(1), 1–26 (2005)

    Article  Google Scholar 

  11. Hanssen, A.R.: Numerical Modelling of Bingham Fluid Flow and Particle Transport in a Rough-Walled Fracture,Master’s thesis, Norwegian University of Science and Technology (NTNU) (2013)

    Google Scholar 

  12. Irgens, F.: Continuum mechanics Springer Berlin Heidelberg (2008)

  13. Karimi-Fard, M., Durlofsky, L., Aziz, K., et. al: An efficient discrete-fracture model applicable for general-purpose reservoir simulators. SPE J. 9(02), 227–236 (2004)

    Article  Google Scholar 

  14. Koponen, A., Kataja, M., Timonen, J.: Tortuous flow in porous media. Phys. Rev. E. 54(1), 406 (1996)

    Article  Google Scholar 

  15. Lavrov, A.: Non-newtonian fluid flow in rough-walled fractures: A brief review. Rock Characterisation. Modelling and Engineering Design Methods 363 (2013)

  16. Lavrov, A.: Numerical modeling of steady-state flow of a non-newtonian power-law fluid in a rough-walled fracture. Comput. Geotech. 50, 101–109 (2013)

    Article  Google Scholar 

  17. Lavrov, A.: Redirection and channelization of power-law fluid flow in a rough-walled fracture. Chem. Eng. Sci. 99, 81–88 (2013)

    Article  Google Scholar 

  18. Lavrov, A.: Radial flow of non-newtonian power-law fluid in a rough-walled fracture: effect of fluid rheology. Transp. Porous Media 105(3), 559–570 (2014)

    Article  Google Scholar 

  19. Lavrov, A.: Flow of truncated power-law fluid between parallel walls for hydraulic fracturing applications. J. Non-Newtonian Fluid Mech. 223, 141–146 (2015)

    Article  Google Scholar 

  20. Lavrov, A.: Lost circulation: Mechanisms and solutions. Elsevier (2016)

  21. Lavrov, A., Larsen, I., Bauer, A.: Numerical modelling of extended leak-off test with a pre-existing fracture. Rock Mech. Rock. Eng. 49(4), 1359–1368 (2016)

    Article  Google Scholar 

  22. Lavrov, A., Larsen, I., Holt, R., Bauer, A., Pradhan, S., et al.: Hybrid FEM/DEM Simulation of Hydraulic Fracturing in Naturally-Fractured Reservoirs 48Th US Rock Mechanics/Geomechanics Symposium. American Rock Mechanics Association (2014)

    Google Scholar 

  23. Lie, K.A., Krogstad, S., Ligaarden, I.S., Natvig, J.R., Nilsen, H.M., Skaflestad, B.: Open-source matlab implementation of consistent discretisations on complex grids. Comput. Geosci. 16(2), 297–322 (2012)

    Article  Google Scholar 

  24. Lipscomb, G., Denn, M.: Flow of bingham fluids in complex geometries. J. Non-Newtonian Fluid Mech. 14, 337–346 (1984)

    Article  Google Scholar 

  25. O’Donovan, E., Tanner, R.: Numerical study of the bingham squeeze film problem. J. Non-Newtonian Fluid Mech. 15(1), 75–83 (1984)

    Article  Google Scholar 

  26. Papanastasiou, T.C.: Flows of materials with yield. J. Rheol. 31(5), 385–404 (1987)

    Article  Google Scholar 

  27. Perkowska, M., Wrobel, M., Mishuris, G.: Universal hydrofracturing algorithm for shear-thinning fluids: Particle velocity based simulation. Comput. Geotech. 71, 310–337 (2016)

    Article  Google Scholar 

  28. Rossen, W., Gauglitz, P.: Percolation theory of creation and mobilization of foams in porous media. AIChE J 36(8), 1176–1188 (1990)

    Article  Google Scholar 

  29. Sandve, T., Berre, I., Nordbotten, J.M.: An efficient multi-point flux approximation method for discrete fracture–matrix simulations. J. Comput. Phys. 231(9), 3784–3800 (2012)

    Article  Google Scholar 

  30. Shah, C., Yortsos, Y.: Aspects of flow of power-law fluids in porous media. AIChE J. 41(5), 1099–1112 (1995)

    Article  Google Scholar 

  31. Sochi, T.: Modelling the flow of yield-stress fluids in porous media. Transp. Porous Media 85(2), 489–503 (2010)

    Article  Google Scholar 

  32. Talon, L., Auradou, H., Hansen, A.: Effective rheology of bingham fluids in a rough channel. Front. Phys. 2, 24 (2014)

    Article  Google Scholar 

  33. Valk, P., Economides, M.J.: Hydraulic Fracture Mechanics. Wiley, New York (1995)

    Google Scholar 

  34. White, F.M.: Fluid Mechanics. McGraw-Hill, New York (2003)

    Google Scholar 

  35. Wu, Y., Pruess, K., Witherspoon, P., et al.: Flow and displacement of bingham non-newtonian fluids in porous media. SPE Reserv. Eng. 7(03), 369–376 (1992)

    Article  Google Scholar 

  36. Zimmerman, R., Kumar, S., Bodvarsson, G.: Lubrication theory analysis of the permeability of rough-walled fractures. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 28(4), 325–331 (1991)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to two anonymous reviewers, whose comments have helped improve the manuscript. This publication has been produced with support from the KPN project “Controlled Fracturing for Increased Recovery.” The authors acknowledge the following partners for their contributions: Lundin and the Research Council of Norway (244506/E30).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Bao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bao, K., Lavrov, A. & Nilsen, H.M. Numerical modeling of non-Newtonian fluid flow in fractures and porous media. Comput Geosci 21, 1313–1324 (2017). https://doi.org/10.1007/s10596-017-9639-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9639-y

Keywords

Navigation