Skip to main content
Log in

Dimensionally reduced flow models in fractured porous media: crossings and boundaries

Computational Geosciences Aims and scope Submit manuscript

Abstract

For the simulation of fractured porous media, a common approach is the use of co-dimension one models for the fracture description. In order to simulate correctly the behavior at fracture crossings, standard models are not sufficient because they either cannot capture all important flow processes or are computationally inefficient. We propose a new concept to simulate co-dimension one fracture crossings and show its necessity and accuracy by means of an example and a comparison to a literature benchmark. From the application point of view, often the pressure is known only at a limited number of discrete points and an interpolation is used to define the boundary condition at the remaining parts of the boundary. The quality of the interpolation, especially in fracture models, influences the global solution significantly. We propose a new method to interpolate boundary conditions on boundaries that are intersected by fractures and show the advantages over standard interpolation methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Abdelaziz, Y., Hamouine, A.: A survey of the extended finite element. Comput. Struct. 86(11–12), 1141–1151 (2008)

    Article  Google Scholar 

  2. Acosta, M., Merten, C., Eigenberger, G., Class, H., Helmig, R., Thoben, B., Müller-Steinhagen, H.: Modeling non-isothermal two-phase multicomponent flow in the cathode of PEM fuel cells. J. Power Sources 159 (2), 1123–1141 (2006)

    Article  Google Scholar 

  3. Alboin, C, Jaffré, J, Roberts, J E, Serres, C: Modeling fractures as interfaces for flow and transport in porous media. In: Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment: Proceedings of an AMS-IMS-SIAM Joint Summer Research Conference on Fluid Flow and Transport in Porous Media, Mathematical and Numerical Treatment, June 17–21, 2001, Mount Holyoke College, South Hadley, Massachusetts, American Mathematical Soc., vol. 295, pp. 13–25 (2002)

  4. Angot, P., Boyer, F., Hubert, F., et al: Asymptotic and numerical modelling of flows in fractured porous media. Model. Math. Anal. Numér. 23(2), 239–275 (2009)

    Article  Google Scholar 

  5. Assteerawatt, A.: Flow and transport modelling of fractured aquifers based on a geostatistical approach. PhD thesis, Universität Stuttgart (2008)

  6. Bear, J., Tsang, C.F., Marsily, G.: Flow and contaminant transport in fractured rocks. Academic, San Diego (1993)

    Book  Google Scholar 

  7. Berkowitz, B.: Characterizing flow and transport in fractured geological media: a review. Adv. Water Resour. 25(8–12), 861–884 (2002)

    Article  Google Scholar 

  8. Berrone, S., Pieraccini, S., Scialò, S: On simulations of discrete fracture network flows with an optimization-based extended finite element method. SIAM J. Sci. Comput. 35(2), A908–A935 (2013)

    Article  Google Scholar 

  9. D’Angelo, C., Scotti, A.: A mixed finite element method for Darcy flow in fractured porous media with non-matching grids. ESAIM: Math. Model. Numer. Anal. 46(02), 465–489 (2012)

    Article  Google Scholar 

  10. Dietrich, P., Helmig, R., Sauter, M., Hötzl, H, Köngeter, J, Teutsch, G: Flow and transport in fractured porous media. Springer, Berlin (2005)

    Book  Google Scholar 

  11. Dogan, M.O., Class, H., Helmig, R.: Different concepts for the coupling of porous-media flow with lower-dimensional pipe flow. CMES: Comput. Model. Eng. Sci. 53(3), 207–234 (2009)

    Google Scholar 

  12. Dolbow, J.: An extended finite element method with discontinuous enrichment for applied mechanics. PhD thesis, Northwestern University (1999)

  13. Dolbow, J, Moës, N, Belytschko, T: Discontinuous enrichment in finite elements with a partition of unity method. Finite Elem. Anal. Des. 36(3–4), 235–260 (2000)

    Article  Google Scholar 

  14. Erbertseder, K., Reichold, J., Helmig, R., Jenny, P., Flemisch, B.: A coupled discrete/continuum model for describing cancer therapeutic transport in the lung. PLoS One 7(3), e31,966 (2012)

    Article  Google Scholar 

  15. Formaggia, L., Fumagalli, A., Scotti, A., Ruffo, P.: A reduced model for Darcy’s problem in networks of fractures. MOX report 32 (2012)

  16. Fumagalli, A., Scotti, A.: An efficient XFEM approximation of Darcy flows in fractured porous media. MOX report 53 (2012)

  17. Hansbo, A., Hansbo, P.: A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193(33), 3523–3540 (2004)

    Article  Google Scholar 

  18. Hansbo, P.: Nitsche’s method for interface problems in computational mechanics. GAMM-Mitteilungen 28(2), 183–206 (2005)

    Article  Google Scholar 

  19. Huang, H., Long, T.A., Wan, J., Brown, W.P.: On the use of enriched finite element method to model subsurface features in porous media flow problems. Comput. Geosci. 15(4), 721–736 (2011)

    Article  Google Scholar 

  20. Martin, V, Jaffré, J, Roberts, J E: Modeling fractures and barriers as interfaces for flow in porous media. SIAM J. Sci. Comput. 26(5), 1667–1691 (2005)

    Article  Google Scholar 

  21. Matthäi, S K, Belayneh, M: Fluid flow partitioning between fractures and a permeable rock matrix. Geophys. Res. Lett. 31(7), 7602–6 (2004)

    Article  Google Scholar 

  22. Mohammadi, S.: Extended Finite Element Method. Wiley, New York (2008)

    Book  Google Scholar 

  23. Neumann, S.P.: Trends, prospects and challenges in quantifying flow and transport through fractured rocks. Hydrogeol. J. 13, 124–147 (2005)

    Article  Google Scholar 

  24. Neunhäuserer, L: Diskretisierungsansätze zur Modellierung von Strömungs- und Transportprozessen in geklüftet-porösen Medien. PhD thesis, Universität Stuttgart. http://elib.uni-stuttgart.de/opus/volltexte/2003/1477 (2003)

  25. Nordbotten, J., Celia, M., Dahle, H., Hassanizadeh, S.: Interpretation of macroscale variables in Darcy’s law. Water Resour. Res. 43(8) (2007)

  26. Swedish Nuclear Power Inspectorate (SKI): The International Hydrocoin Project–Background and Results. Organization for Economic Co-operation and Development, Paris (1987)

  27. Tsang, Y.W., Tsang, C.: Channel model of flow through fractured media. Water Resour. Res. 23(3), 467–479 (1987)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicolas Schwenck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schwenck, N., Flemisch, B., Helmig, R. et al. Dimensionally reduced flow models in fractured porous media: crossings and boundaries. Comput Geosci 19, 1219–1230 (2015). https://doi.org/10.1007/s10596-015-9536-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9536-1

Keywords

Navigation