Skip to main content
Log in

High-resolution finite element methods for 3D simulation of compositionally triggered instabilities in porous media

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

The formation and development of patterns in the unstable interface between an injected fluid and hydrocarbons or saline aqueous phase in a porous medium can be driven by viscous effects and gravity. Numerical simulation of the so-called fingering is a challenge, which requires rigorous representation of the fluid flow and thermodynamics as well as highresolution discretization in order to minimize numerical artifacts. To achieve such a high resolution, we present higherorder 3D finite element methods for the simulation of fully compositional, three-phase and multi-component flow. This is based on a combination of the mixed hybrid finite element (MHFE) method for total fluid velocity and discontinuous Galerkin (DG) method for the species transport. The phase behavior is described by cubic or cubic-plus-association (CPA) equations of state. We present challenging numerical examples of compositionally triggered fingering at both the core and the large scale. Four additional test cases illustrate the robustness and efficiency of the proposed methods, which demonstrate their power for problems of this complexity. Results reveal three orders of magnitude improvement in CPU time in our method compared with the lowest-order finite difference method for some of the examples. Comparison between 3D and 2D results highlights the significance of dimensionality in the flow simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Homsy, G.M.: Viscous fingering in porous media. Annu. Rev. Fluid Mech. 19, 271–311 (1987). doi:10.1146/annurev.fluid.19.1.271

    Article  Google Scholar 

  2. DeWit, A., Homsy, G.M.: Viscous fingering in periodically heterogeneous porous media.1. Formulation and linear instability. J. Chem. Phys. 107(22), 9609–9618 (1997). doi:10.1063/1.475258

    Article  Google Scholar 

  3. DeWit, A., Homsy, G.M.: Viscous fingering in periodically heterogeneous porous media.2. Numerical simulations. J. Chem. Phys. 107(22), 9619–9628 (1997). doi:10.1063/1.475259

    Article  Google Scholar 

  4. Manickam, O., Homsy, G.M.: Simulation of viscous Fingering in miscible displacement with monotonic viscosity profiles. Phys. Fluids 6(1), 95–107 (1994). doi:10.1063/1.868049

    Article  Google Scholar 

  5. Zimmerman, W.B., Homsy, G.M.: 3-Dimensional viscous fingering - a numerical study. Phys. Fluids A: Fluid Dyn. 4(9), 1901–1914 (1992). doi:10.1063/1.858361

    Article  Google Scholar 

  6. Craster, R.V., Matar, O.K.: Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81(3), 1131–1198 (2009). doi:10.1103/RevModPhys.81.1131

    Article  Google Scholar 

  7. Heussler, F.H.C., Oliveira, R.M., John, M.O., Meiburg, E.: Three-dimensional Navier-Stokes simulations of buoyant, vertical miscible Hele-Shaw displacements. J. Fluid Mech. 752, 157–183 (2014). doi:10.1017/jfm.2014.327

    Article  Google Scholar 

  8. Nittmann, J., Daccord, G., Stanley, H.E.: Fractal growth of viscous fingers - quantitative characterization of a fluid instability phenomenon. Nature 314(6007), 141–144 (1985). doi:10.1038/314141a0

    Article  Google Scholar 

  9. Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931–980 (1997). doi:10.1103/RevModPhys.69.931

    Article  Google Scholar 

  10. Pau, G.S., Bell, J.B., Pruess, K., Almgren, A.S., Lijewski, M.J., Zhang, K.: High resolution simulation and characterization of density-driven flow in CO2 storage in saline aquifers. Adv. Water Resour. 33, 443–455 (2010)

    Article  Google Scholar 

  11. Thompson, A.B., Juel, A., Hazel, A.L.: Multiple finger propagation modes in Hele-Shaw channels of variable depth. J. Fluid Mech. 746, 123–164 (2014). doi:10.1017/jfm.2014.100

    Article  Google Scholar 

  12. Class, H., Ebigbo, A., Helmig, R., Dahle, H.K., Nordbotten, J.M., Celia, M.A., Audigane, P., Darcis, M., Ennis-King, J., Fan, Y.Q., Flemisch, B., Gasda, S.E., Jin, M., Krug, S., Labregere, D., Beni, A.N., Pawar, R.J., Sbai, A., Thomas, S.G., Trenty, L., Wei, L.L.: A benchmark study on problems related to CO2 storage in geologic formations. Comput. Geosci. 13 (4), 409–434 (2009). doi:10.1007/s10596-009-9146-x

    Article  Google Scholar 

  13. Gerritsen, M.G., Durlofsky, L.J.: Modeling fluid flow in oil reservoirs. Annu. Rev. Fluid Mech. 37, 211–238 (2005). doi:10.1146/annurev.fluid.37.061903.175748

    Article  Google Scholar 

  14. Coats, K.H.: A note on IMPES and some IMPES-based simulation models. SPE J. 5(3), 245–251 (2000)

    Article  Google Scholar 

  15. Thomas, G.W., Thurnau, D.H.: Reservoir simulation using adaptive implicit method. SPE J. 23, 759–768 (1983)

    Article  Google Scholar 

  16. CMG: GEM (generalized equation-of-state model compositional reservoir simulator) user guide (2012)

  17. Schlumberger: Eclipse technical description. In (2007)

  18. Flemisch, B., Darcis, M., Erbertseder, K., Faigle, B., Lauser, A., Mosthaf, K., Müthing, S., Nuske, P., Tatomir, A., Wolff, M., Helmig, R.: DuMuX: Dune for multi-{phase, component, scale, physics,...} flow and transport in porous media. Adv. Water Resour. 34(9), 1102–1112 (2011). doi:10.1016/j.advwatres.2011.03.007

    Article  Google Scholar 

  19. Robinson, B.A., Viswanathan, H.S., Valocchi, A.J.: Efficient numerical techniques for modeling multicomponent ground-water transport based upon simultaneous solution of strongly coupled subsets of chemical components. Adv. Water Resour. 23(4), 307–324 (2000). doi:10.1016/s0309-1708(99)00034-2

    Article  Google Scholar 

  20. Cao, H.: Development of techniques for general purpose simulators. PhD, Stanford University (2002)

  21. Jiang, Y.: Techniques for modeling complex reservoirs and advanced wells. PhD, Stanford University (2007)

  22. Arbogast, T., Wheeler, M.F.: A characteristics-mixed finite element method for advection-dominated transport problems. SIAM J. Numer. Anal. 32, 404–424 (1995)

    Article  Google Scholar 

  23. Okuno, R., Johns, R.T., Sepehrnoori, K.: Three-phase flash in compositional simulation using a reduced method. SPE J. 15(3), 1–15 (2010)

    Article  Google Scholar 

  24. Wang, W., Kosakowski, G., Kolditz, O.: A parallel finite element scheme for thermo-hydro-mechanical (THM) coupled problems in porous media. Comput. Geosci. 35(8), 1631–1641 (2009). doi:10.1016/j.cageo.2008.07.007

    Article  Google Scholar 

  25. Wheeler, J., Wheeler, M.: Integrated parallel and accurate reservoir simulator. In. University of Texas at Austin (2001)

  26. Pruess, K.: The TOUGH codes—a family of simulation tools for multiphase flow and transport processes in permeable media. Vadose Zone J. 3(3), 738–746 (2004). doi:10.2113/3.3.738

    Google Scholar 

  27. Zidane, A., Firoozabadi, A.: An efficient numerical model for multicomponent compressible flow in fractured porous media. Adv. Water Resour. 74, 127–147 (2014)

    Article  Google Scholar 

  28. Jackson, M., Gomes, J., Mostaghimi, P., Percival, J., Tollit, B., Pavlidis, D., Pain, C., El-Sheikh, A., Muggeridge, A., Blunt, M.: Reservoir modeling for flow simulation using surfaces, adaptive unstructured meshes and control-volume-finite-element methods. Paper presented at the SPE Reservoir Simulation Symposium, The Woodlands, Texas, USA

  29. Jackson, M., Hampson, G., El-Sheikh, A., Saunders, J., Graham, G., Massart, B.: Surface-based reservoir modelling for flow simulation. Geol. Soc. Lond. Spec. Publ., 387 (2013)

  30. Blunt, M., Rubin, B.: Implicit flux limiting schemes for petroleum reservoir simulation. J. Comput. Phys. 102(1), 194–209 (1992)

    Article  Google Scholar 

  31. Liu, J., Delshad, M., Pope, G.A., Sepehrnoori, K.: Application of higher order flux-limited methods in compositional simulation. J. Transport Porous Media 16(1-29) (1994)

  32. Todd, M.R., O’Dell, P.M., Hirasaki, G.J.: Methods for increased accuracy in numerical reservoir simulators. Soc. Pet. Eng. J. 12, 515–529 (1972)

    Article  Google Scholar 

  33. Mikyska, J., Firoozabadi, A.: Implementation of higher-order methods for robust and efficient compositional simulation. J. Comput. Phys. 229, 2898–2913 (2010). doi:10.1016/j.jcp.2009.12.022

    Article  Google Scholar 

  34. Coats, K.H.: An equation of state compositional model. SPE J. 20(5), 363–376 (1980). doi:10.2118/8284-PA

    Article  Google Scholar 

  35. Ewing, R.E., Heinemann, R.F.: Incorporation of mixed finite element methods in compositional simulation for reduction of numerical dispersion. Paper presented at the SPE Reservoir Simulation Symposium, San Francisco, CA, USA, 15-18 November 1983

  36. Scovazzi, G., Gerstenberger, A., Collis, S.S.: A discontinuous Galerkin method for gravity-driven viscous fingering instabilities in porous media. J. Comput. Phys. 233, 373–399 (2013). doi:10.1016/j.jcp.2012.09.003

    Article  Google Scholar 

  37. Riaz, A., Hesse, M., Tchelepi, H.A., Orr, F.M.: Onset of convection in a gravitationally unstable diffusive boundary layer in porous media. J. Fluid Mech. 548(87–111) (2006)

  38. Myint, P.C., Firoozabadi, A.: Onset of convection with fluid compressibility and interface movement. Phys. Fluids 25, 094105 (2013)

    Article  Google Scholar 

  39. Myint, P.C., Firoozabadi, A.: Onset of buoyancy-driven convection in Cartesian and cylindrical geometries. Phys. Fluids 25, 044105 (2013)

    Article  Google Scholar 

  40. Moortgat, J., Li, Z., Firoozabadi, A.: Three-phase compositional modeling of CO 2 injection by higher-order finite element methods with CPA equation of state for aqueous phase. Water Resour. Res. 48, W12511 (2012). doi:10.1029/2011WR011736

    Google Scholar 

  41. Moortgat, J., Firoozabadi, A.: Fickian diffusion in discrete-fractured media from chemical potential gradients and comparison to experiment. Energy Fuel 27(10), 5793–5805 (2013). doi:10.1021/ef401141q

    Article  Google Scholar 

  42. Leahy-Dios, A., Firoozabadi, A.: Unified model for nonideal multicomponent molecular diffusion coefficients. AlChE J. 53(11), 2932–2939 (2007)

    Article  Google Scholar 

  43. Darlow, B.L., Ewing, R.E., Wheeler, M.: Mixed finite element methods for miscible displacement in porous media. Paper presented at the 6th SPE Reservoir Simulation Symposium, New Orlean, LA, USA

  44. Hoteit, H., Firoozabadi, A.: Simple phase stability-testing algorithm in the reduction method. Aiche J. 52 (8), 2909–2920 (2006). doi:10.1002/aic.10908

    Article  Google Scholar 

  45. Acs, G., Doleschall, E., Farkas, E.: General purpose compositional model. SPE J. 25(4), 543–553 (1985). doi:SPE-10515-PA

    Article  Google Scholar 

  46. Moortgat, J., Sun, S., Firoozabadi, A.: Compositional modeling of three-phase flow with gravity using higher-order finite element methods. Water Resour. Res. 47, W05511 (2011). doi:10.1029/2010WR009801

    Google Scholar 

  47. Li, Z., Firoozabadi, A.: General strategy for stability testing and phase-split calculation in two and three phases. SPE J. 17(4), 1096–1107 (2012). doi:SPE-129844-PP

    Article  Google Scholar 

  48. Robinson, Peng, D.-Y.: The characterization of the heptanes and heavier fractions for the GPA Peng-Robinson programs. Gpa Research Report / Rr : 28. Gas Processors Association, Tulsa, Okla (1978)

  49. Li, Z., Firoozabadi, A.: Cubic-Plus-Association (Cpa) Equation of state for water-containing mixtures: is ’cross association’ necessary? AIChE J. 55(7), 1803–1813 (2009)

    Article  Google Scholar 

  50. Stone, H.: Probability model for estimating three-phase relative permeability. J. Petrol. Technol. 214, 214–218 (1970)

    Article  Google Scholar 

  51. Stone, H.: Estimation of three-phase relative permeability and residual oil data. J. Can. Petrol. Technol. 12, 53–61 (1973)

    Google Scholar 

  52. Hoteit, H., Firoozabadi, A.: Compositional modeling by the combined discontinuous Galerkin and mixed methods. SPE J. 11(1), 19–34 (2006). doi:10.2118/90276-PA

    Article  Google Scholar 

  53. Hoteit, H., Ackerer, P., Mose, R., Erhel, J., Philippe, B.: New two-dimensional slope limiters for discontinuous Galerkin methods on arbitrary meshes. International Journal for Numerical Methods in Engineering 61(14), 2566–2593 (2004). doi:10.1002/nme.1172

    Article  Google Scholar 

  54. Birkhoff, G., Rota, G.-C.: Ordinary differential equations, 6th edn. Wiley, New York (1989)

    Google Scholar 

  55. Hoteit, H., Firoozabadi, A.: An efficient numerical model for incompressible two-phase flow in fractured media. Adv. Water Resour. 31(6), 891–905 (2008). doi:10.1016/j.advwatres.2008.02.004

    Article  Google Scholar 

  56. Moortgat, J., Firoozabadi, A., Li, Z., Esposito, R.: CO2 injection in vertical and horizontal cores: measurements and numerical simulation. SPE J. 18(2), 331–344 (2013)

    Article  Google Scholar 

  57. Moortgat, J., Firoozabadi, A.: Three-phase compositional modeling with capillarity in heterogeneous and fractured media. SPE J. (2013)

  58. Moortgat, J., Firoozabadi, A.: Higher-order compositional modeling of three-phase flow in 3d fractured porous media based on cross-flow equilibrium. J. Comput. Phys. 250, 425–445 (2013). doi:10.1016/j.jcp.2013.05.009

    Article  Google Scholar 

  59. Ahmed, T., Nasrabadi, H., Firoozabadi, A.: Complex flow and composition path in CO 2 injection schemes from density effects. Energy Fuel 26, 4590–4598 (2012). doi:10.1021/ef300502f

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ebrahim Shahraeeni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shahraeeni, E., Moortgat, J. & Firoozabadi, A. High-resolution finite element methods for 3D simulation of compositionally triggered instabilities in porous media. Comput Geosci 19, 899–920 (2015). https://doi.org/10.1007/s10596-015-9501-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9501-z

Keywords

Mathematics Subject Classification (2010)

Navigation