Skip to main content
Log in

Benchmarks for multicomponent diffusion and electrochemical migration

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In multicomponent electrolyte solutions, the tendency of ions to diffuse at different rates results in a charge imbalance that is counteracted by the electrostatic coupling between charged species leading to a process called “electrochemical migration” or “electromigration.” Although not commonly considered in solute transport problems, electromigration can strongly affect mass transport processes. The number of reactive transport models that consider electromigration has been growing in recent years, but a direct model intercomparison that specifically focuses on the role of electromigration has not been published to date. This contribution provides a set of three benchmark problems that demonstrate the effect of electric coupling during multicomponent diffusion and electrochemical migration and at the same time facilitate the intercomparison of solutions from existing reactive transport codes. The first benchmark focuses on the 1D transient diffusion of HNO3 (pH = 4) in a NaCl solution into a fixed concentration reservoir, also containing NaCl—but with lower HNO3 concentrations (pH = 6). The second benchmark describes the 1D steady-state migration of the sodium isotope 22Na triggered by sodium chloride diffusion in neutral pH water. The third benchmark presents a flow-through problem in which transverse dispersion is significantly affected by electromigration. The system is described by 1D transient and 2D steady-state models. Very good agreement on all of the benchmarks was obtained with the three reactive transport codes used: CrunchFlow, MIN3P, and PHREEQC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Alt-Epping, P., Tournassat, C., Rasouli, P., Steefel, C., Mayer, K.,Jenni, A., Mäder, U., Sengor, S., Fernandez, R.: Benchmark reactive transport simulations of a column experiment in compacted bentonite with multispecies diffusion and explicit treatment of electrostatic effects. Comput. Geosci. (2015). doi:10.1007/s10596-014-9451-x

  2. Appelo, C.A.J.: Multicomponent diffusion in clays. In: Candela, L., Vadillo, I., Aagaard, P. (eds.) Water Pollution in Natural Porous Media, pp. 3–13. Instituto Geologico de Espana, Madrid (2007)

    Google Scholar 

  3. Appelo, C.A.J., Wersin, P.: Multicomponent diffusion modeling in clay systems with application to the diffusion of tritium, iodide, and sodium in Opalinus Clay. Environ. Sci. Technol. 41, 5002–5007 (2007)

    Article  Google Scholar 

  4. Appelo, C.A.J., Van Loon, L.R., Wersin, P.: Multicomponent diffusion of a suite of tracers (HTO, Cl, Br, I, Na, Sr, Cs) in a single sample of Opalinus Clay. Geochim. Cosmochim. Acta 74, 1201–1219 (2010)

    Article  Google Scholar 

  5. Bagotsky, V.S.: Fundamentals of Elechtrochemistary, 2nd edn. John Wiley and Sons, Pennington (2006)

    Google Scholar 

  6. Bard, A.J., Faulkner, L.R.: Electrochemical Methods: Fundamentals and Applications. John Wiley and Sons, New York (1980)

    Google Scholar 

  7. Ben-Yaakov, S.: Diffusion of seawater ions—significance and consequences of cross coupling effects. Am. J. Sci. 281, 974–980 (1981)

    Article  Google Scholar 

  8. Boudreau, B.P.: Diagenetic models and their implementation. Springer, New York (1997)

    Book  Google Scholar 

  9. Boudreau, B.P., Meysman, F.J.R., Middelburg, J.J.: Multicomponent ionic diffusion in porewaters: Coulombic effects revisited. Earth Planet. Sci. Lett. 222, 653–666 (2004)

    Article  Google Scholar 

  10. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects. Hydrogeol. J. 6, 178–190 (1998)

    Article  Google Scholar 

  11. Chiogna, G., Cirpka, O.A., Grathwohl, P., Rolle, M.: Relevance of local compound-specific transverse dispersion for conservative and reactive mixing in heterogeneous porous media. Water Resour. Res. 47, W06515 (2011). doi:10.1029/2010WR010270

    Google Scholar 

  12. Cussler, E.L.: Diffusion: Mass Transfer in Fluid Systems, 2nd edn. Cambridge University Press, New York (1997)

    Google Scholar 

  13. Giambalvo, E.R., Steefel, C.I., Fisher, A.T., Rosenberg, N.D., Wheat, C.G.: Effect of fluid-sediment reaction on hydrothermal fluxes of major elements, eastern flank of the Juan de Fuca Ridge. Geochim. Cosmochim. Acta 66, 1739–1757 (2002)

    Article  Google Scholar 

  14. Glaus, M.A., Birgersson, M., Karnland, O., Van Loon, L.R.: Seeming steady-state uphill diffusion of 22Na+ in compacted montmorillonite. Environ. Sci. Tech. 47, 11522–11527 (2013)

    Article  Google Scholar 

  15. Helfferich, F.: Ion Exchange, 2nd edn. McGraw-Hill, New York (1962)

    Google Scholar 

  16. Hochstetler, D.L., Rolle, M., Chiogna, G., Haberer, C.M., Grathwohl, P., Kitanidis, P.K.: Effects of compound-specific transverse mixing on steady-state reactive plumes: insights from pore-scale simulations and Darcy-scale experiments. Adv. Water Resour. 54, 1–13 (2013). doi:10.1016/j.advwatres.2012.12.007

    Article  Google Scholar 

  17. Johannesson, B., Yamada, K., Nilsson, L.O., Hosokawa, Y.: Multi-species ionic diffusion in concrete with account to interaction between ions in the pore solution and the cement hydrates. Materials and Structures, Kluwer Academic Publishers, 40, 651–665 (2007)

  18. Kang, Q., Lichtner, P.C., Zhang, D.: Lattice Boltzmann porescale model for multi-component reactive transport in porous media. J. Geophys. Res 111, B05203 (2006). doi:10.1029/2005JB003951

    Google Scholar 

  19. LaBolle, E.M., Fogg, G.E.: Role of molecular diffusion in contaminant migration and recovery in alluvial aquifer system. Transp. Porous Media 42, 155–179 (2001)

    Article  Google Scholar 

  20. Lasaga, A.C.: Treatment of multicomponent diffusion and ion-pairs in diagenetic fluxes. Am. J. Sci. 279, 324–346 (1979)

    Article  Google Scholar 

  21. Lichtner, P.C.: Principles and practice of reactive transport modeling. Mater. Res. Soc. Symp. Proc. 353, 117–130 (1995)

    Article  Google Scholar 

  22. Lichtner, P.C.: Continuum formulation of multicomponent–multiphase reactive transport. Ch. 1 in. reactive transport in porous media. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reviews in Mineralogy, vol. 34. Mineralogical Society of America, Washington, DC (1996)

    Google Scholar 

  23. Liu, C.X., Shang, J., Zachara, J.M.: Multispecies diffusion models: a study of uranyl species diffusion. Water Resour. Res. 47, W12514 (2011). doi:10.1029/2011WR010575

    Google Scholar 

  24. MacQuarrie, K.T.B., Mayer, K.U.: Reactive transport modeling in fractured rock: a state-of-the-science review. Earth Sci. Rev. 72, 189–227 (2005)

    Article  Google Scholar 

  25. Mayer, K.U., Frind, E.O., Blowes, D.W.: A numerical model for the investigation of reactive transport in variably saturated media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. 38, 1301–1321 (2002). doi:10.1029/2001WR000862

  26. McDuff, E.R., Ellis, A.R.: Determining diffusion-coefficients in marine-sediments—laboratory study of the validity of resistivity techniques. Am. J. Sci. 279, 666–675 (1979)

    Article  Google Scholar 

  27. Molins, S., Trebotich, D., Steefel, C.I., Shen, C.: An investigation of the effect of pore scale flow on average geochemical reaction rates using direct numerical simulation. Water Resour. Res. 48, W03527 (2012). doi: 10.1029/2011WR011404

  28. Muniruzzaman, M., Haberer, C.M., Grathwohl, P., Rolle, M.: Multicomponent ionic dispersion during transport of electrolytes in heterogeneous porous media: experiments and model-based interpretation. Geochim. Cosmochim. Acta 141, 656–669 (2014)

    Article  Google Scholar 

  29. Newman, J.S.: Electrochemical Systems. Prentice-Hall, Englewood Cliff (1973)

    Google Scholar 

  30. Oelkers, E.H.: Physical and chemical properties of rocks and fluids for chemical mass transport calculations. Rev. Mineral. Geochem. 34, 131–191 (1996)

    Google Scholar 

  31. Ovaysi, S., Piri, M.: Pore-scale dissolution of CO2 + SO2 in deep saline aquifers. Int. J. Greenh. Gas Control 15, 119–133 (2013)

    Article  Google Scholar 

  32. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (version 2)—a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Denver (1999)

  33. Paz-Garcia, J.M., Johannesson, B., Ottosen, L.M., Ribeiro, A.B.., Rodriguez-Maroto, J.M.: Modeling of electrokinetic processes by finite element integration of the Nernst-Planck-Poisson system of equations. Sep. Purif. Technol. 79, 183–192 (2011)

    Article  Google Scholar 

  34. Rolle, M., Hochstetler, D.L., Chiogna, G., Kitanidis, P., Grathwohl, P.: Experimental investigation and pore-scale modeling interpretation of compound-specific transverse dispersion in porous media. Transp. Porous Media 93, 347–362 (2012)

    Article  Google Scholar 

  35. Rolle, M., Muniruzzaman, M., Haberer, C.M., Grathwohl, P.: Coulombic effects in advection-dominated transport of electrolytes in porous media: multicomponent ionic dispersion. Geochim. Cosmochim. Acta 120, 195–205 (2013)

    Article  Google Scholar 

  36. Rolle, M., Chiogna, G., Hochstetler, D.L., Kitanidis, P.K.: On the importance of diffusion and compound-specific mixing for groundwater transport: an investigation from pore to field scale. J. Contam. Hydrol. 153, 51–68 (2013)

    Article  Google Scholar 

  37. Rolle, M., Kitanidis, P.K.: Effects of compound-specific dilution on transient transport and solute breakthrough: a pore-scale analysis. Adv. Water Resour. 71, 186–199 (2014)

    Article  Google Scholar 

  38. Shiba, S., Hirata, Y., Seno, T.: Mathematical model for hydraulically aided electrokinetic remediation of aquifer and removal of nonanionic copper. Eng. Geol. 77, 305–315 (2005)

    Article  Google Scholar 

  39. Steefel, C.I., Carroll, S.A., Zhao, P., Roberts, S.: Cesium migration in Hanford sediment: a multisite cation exchange model based on laboratory transport experiments. J. Contam. Hydrol. 67, 219–246 (2003)

    Article  Google Scholar 

  40. Steefel, C.I., Maher, K.: Fluid-rock interaction: a reactive transport approach. Rev. Mineral. Geochem. 70, 485–532 (2009). Mineralogical Society of America

    Article  Google Scholar 

  41. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. (2014). doi:10.1007/s10596-014-9443-x

  42. Taylor, R., Krishna, R.: Multicomponent Mass Transfer. John Wiley and Sons, New York (1993)

    Google Scholar 

  43. Tyrrell, H.J.V.: Diffusion and Heat Flow in Liquids. Butterworths, London (1961)

    Google Scholar 

  44. Van Cappellen, P., Gaillard, J.F.: Biogeochemical dynamics in aquatic sediments. Ch. 8 in.: reactive transport in porous media. In: Lichtner, P.C., Steefel, C.I., Oelkers, E.H. (eds.) Reviews in Mineralogy, vol. 34, pp. 335–376. Mineralogical Society of America, Washington, DC (1996)

    Google Scholar 

  45. Vinograd, J.R., McBain, J.W.: Diffusion of electrolytes and of the ions in their mixtures. J. Am. Chem. Soc. 63, 2008–2015 (1941)

    Article  Google Scholar 

  46. Wang, Y., Van Cappellen, P.: A multicomponent reactive transport model of early digenesis: application to redox cycling in coastal marine sediments. Geochim. Cosmochim. Acta 60, 2993–3014 (1996)

    Article  Google Scholar 

Download references

Acknowledgments

Funding for this research was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) in the form of a Discovery Grant and a Discovery Accelerator Supplement Award held by K. Ulrich Mayer. The contribution of C. Steefel was supported by the Director, Office of Science, Office of Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. M. Rolle acknowledges the support of the Baden-Württemberg Stiftung under the Elite program for postdocs.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pejman Rasouli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Material

Input and database files for the three participating codes CrunchFlow, MIN3P and PHREEQC are provided. In addition, selected output files as shown in Figures 2-8 are also provided as Supplementary Material. (ZIP 1621 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rasouli, P., Steefel, C.I., Mayer, K.U. et al. Benchmarks for multicomponent diffusion and electrochemical migration. Comput Geosci 19, 523–533 (2015). https://doi.org/10.1007/s10596-015-9481-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9481-z

Keywords

Navigation