Skip to main content
Log in

Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Smoothed particle hydrodynamics (SPH) is a Lagrangian method based on a meshless discretization of partial differential equations. In this review, we present SPH discretization of the Navier-Stokes and advection-diffusion-reaction equations, implementation of various boundary conditions, and time integration of the SPH equations, and we discuss applications of the SPH method for modeling pore-scale multiphase flows and reactive transport in porous and fractured media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tartakovsky, A.M., Ward, A.L., Meakin, P.: Pore-scale simulations of drainage of heterogeneous and anisotropic porous media. Phys. Fluids 19(10), 103301 (2007)

    Article  Google Scholar 

  2. Tartakovsky, A.M., Redden, G., Lichtner, P., Scheibe, T., Meakin, P.: Mixing-induced precipitation: experimental study and multi-scale numerical analysis. Water Resour. Res. 44, W06S04 (2008)

    Article  Google Scholar 

  3. Battiato, I., Tartakovsky, D.M., Tartakovsky, A.M., Scheibe, T.D.: Hybrid models of reactive transport in porous and fractured media. Adv. Water Resour. 34(9), 1140–1150 (2011)

    Article  Google Scholar 

  4. Tartakovsky, A., Scheibe, T.: Dimension reduction numerical closure method for advection-diffusion-reaction systems. Adv. Water Resour. 34(12), 1616–1626 (2011)

    Article  Google Scholar 

  5. de Anna, P., Borgne, T.L., Dentz, M., Tartakovsky, A.M., Bolster, D., Davy, P.: Flow intermittency, dispersion, and correlated continuous time random walks in porous media. Phys. Rev. Lett. 110(18), 184502 (2013)

    Article  Google Scholar 

  6. Tartakovsky, A. M.: Langevin model for reactive transport in porous media. Phys. Rev. E. 82(2), 026302 (2010)

    Article  Google Scholar 

  7. Ovaysi, S., Piri, M.: Direct pore-level modeling of incompressible fluid flow in porous media. J. Comput. Phys. 229(19), 7456–7476 (2010)

    Article  Google Scholar 

  8. Meakin, P., Tartakovsky, A.M.: Modeling and simulation of pore scale multiphase fluid flow and reactive transport in fractured and porous media. Rev. Geophys. 47, RG3002 (2009)

    Article  Google Scholar 

  9. Monaghan, J.J.: Smoothed particle hydrodynamics. Rep. Prog. Phys. 68(8), 1703 (2005)

    Article  Google Scholar 

  10. Antuono, M., Colagrossi, A., Marrone, S., Molteni, D.: Free-surface flows solved by means of sph schemes with numerical diffusive terms. Comput. Phys. Commun. 181(3), 532–549 (2010)

    Article  Google Scholar 

  11. Pan, W., Tartakovsky, A., Monaghan, J.: Smoothed particle hydrodynamics non-newtonian model for ice-sheet and ice-shelf dynamics. J. Comput. Phys. 242(0), 828–842 (2013)

    Article  Google Scholar 

  12. Monaghan, J.: Smoothed particle hydrodynamics and its diverse applications. Ann. Rev. Fluid Mech. 44, 323–346 (2012)

    Article  Google Scholar 

  13. Tanner, L.H.: The spreading of silicone oil drops on horizontal surfaces. J. Phys. D: Appl. Phys. Email Alert RSS Feed 12(9), 1473 (1979)

    Article  Google Scholar 

  14. de Gennes, P.: Wetting: statics and dynamics. Rev. Mod. Phys. 57(3), 827–863 (1985)

    Article  Google Scholar 

  15. Dussan V, E.: On the spreading of liquids on solid surfaces: static and dynamic contact lines. Annu. Rev. Fluid Dyn. 11, 371–400 (1979)

    Article  Google Scholar 

  16. Huh, C., Scriven, L.: Hydrodynamic model of steady movement of a solid/liquid/fluid contact line. J. Colloid Interface Sci. 35(1), 85–101 (1971)

    Article  Google Scholar 

  17. Tartakovsky, A.M., Meakin, P.: Pore scale modeling of immiscible and miscible fluid flows using smoothed particle hydrodynamics. Adv. Water Resour. 29(10), 1464–1478 (2006)

    Article  Google Scholar 

  18. Quinlan, N.J., Basa, M., Lastiwka, M.: Truncation error in mesh-free particle methods. Int. J. Numer. Methods Eng. 66(13), 2064–2085 (2006)

    Article  Google Scholar 

  19. Brackbill, J., Kothe, D.B., Zemach, C.: A continuum method for modeling surface tension. J. Comput. Phys. 100(2), 335–354 (1992)

    Article  Google Scholar 

  20. Kordilla, J., Tartakovsky, A., Geyer, T.: A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces. Adv. Water Resour. 59(0), 1–14 (2013)

    Article  Google Scholar 

  21. Zhou, G., Ge, W., Li, J.: A revised surface tension model for macro-scale particle methods. Powder Technol. 183(1), 21–26 (2008)

    Article  Google Scholar 

  22. Nugent, S., Posch, H.: Liquid drops and surface tension with smoothed particle applied mechanics. Phys. Rev. E 62(4), 4968 (2000)

    Article  Google Scholar 

  23. Meleán, Y., Sigalotti, L.D.G., Hasmy, A.: On the sph tensile instability in forming viscous liquid drops. Comput. Phys. Commun. 157(3), 191–200 (2004)

    Article  Google Scholar 

  24. Meleán, Y., Sigalotti, L.D.G.: Coalescence of colliding van der waals liquid drops. Int. J. Heat Mass Transfer 48(19), 4041–4061 (2005)

    Article  Google Scholar 

  25. Bandara, U., Tartakovsky, A., Oostrom, M., Palmer, B., Grate, J., Zhang, C.: Smoothed particle hydrodynamics pore-scale simulations of unstable immiscible flow in porous media, Advances in Water Resources 62, Part C (0) (2013) 356–369

  26. Young, T.: An essay on the cohesion of fluids. Philos. Trans. R. Soc. Lond. 95, 65–87 (1805)

    Article  Google Scholar 

  27. Maxwell, J.: The Scientific Papers of J.M. Maxwell, Capillary Actions, vol. 2, p. 541. Cambridge University Press (1890)

  28. Rayleigh, L.: On the theory of surface forces. In: Collected Papers, vol. 3, Art. 176, pp. 397–425. Dover, New York (1964)

    Google Scholar 

  29. Morris, J. P.: Simulating surface tension with smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 33(3), 333–353 (2000)

    Article  Google Scholar 

  30. Hu, X., Adams, N.: A multi-phase {SPH} method for macroscopic and mesoscopic flows. J. Comput. Phys. 213(2), 844–861 (2006)

    Article  Google Scholar 

  31. Graham, D.I., Hughes, J.P.: Accuracy of sph viscous flow models. Int. J. Numer. Methods Fluids 56(8), 1261–1269 (2008)

    Article  Google Scholar 

  32. Basa, M., Quinlan, N.J., Lastiwka, M.: Robustness and accuracy of sph formulations for viscous flow. Int. J. Numer. Methods Fluids 60(10), 1127–1148 (2009)

    Article  Google Scholar 

  33. Fatehi, R., Manzari, M.: Error estimation in smoothed particle hydrodynamics and a new scheme for second derivatives. Comput. Math. Appl. 61(2), 482–498 (2011)

    Article  Google Scholar 

  34. Hashemi, M., Fatehi, R., Manzari, M.: A modified sph method for simulating motion of rigid bodies in newtonian fluid flows. Int. J. Non-Linear Mech. 47(6), 626–638 (2012)

    Article  Google Scholar 

  35. Chorin, A.J.: A numerical method for solving incompressible viscous flow problems. J. Comput. Phys. 2(1), 12–26 (1967)

    Article  Google Scholar 

  36. Tamamidis, P., Zhang, G., Assanis, D.N.: Comparison of pressure-based and artificial compressibility methods for solving 3d steady incompressible viscous flows. J. Comput. Phys. 124(1), 1–13 (1996)

    Article  Google Scholar 

  37. Morris, J.P., Fox, P.J., Zhu, Y.: Modeling low reynolds number incompressible flows using sph. J. Comput. Phys. 136(1), 214–226 (1997)

    Article  Google Scholar 

  38. Monaghan, J.J.: Simulating free surface flows with sph. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  Google Scholar 

  39. Lastiwka, M., Basa, M., Quinlan, N.J.: Permeable and non-reflecting boundary conditions in sph. Int. J. Numer. Methods Fluids 61(7), 709–724 (2009)

    Article  Google Scholar 

  40. Swegle, J., Hicks, D., Attaway, S.: Smoothed particle hydrodynamics stability analysis. J. Comput. Phys. 116(1), 123–134 (1995)

    Article  Google Scholar 

  41. Balsara, D.S.: Von neumann stability analysis of smoothed particle hydrodynamics—suggestions for optimal algorithms. J. Comput. Phys. 121(2), 357–372 (1995)

    Article  Google Scholar 

  42. Tartakovsky, A.M., Meakin, P., Scheibe, T.D., Eichler West, R.M.: Simulations of reactive transport and precipitation with smoothed particle hydrodynamics. J. Comput. Phys. 222(2), 654–672 (2007)

    Article  Google Scholar 

  43. Holmes, D.W., Williams, J.R., Tilke, P.: Smooth particle hydrodynamics simulations of low reynolds number flows through porous media. Int. J. Numer. Anal. Methods Geomech. 35(4), 419–437 (2011)

    Article  Google Scholar 

  44. Cummins, S.J., Rudman, M.: An sph projection method. J. Comput. Phys. 152(2), 584–607 (1999)

    Article  Google Scholar 

  45. Lee, E-S, Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P.: Comparisons of weakly compressible and truly incompressible algorithms for the sph mesh free particle method. J. Comput. Phys. 227(18), 8417–8436 (2008)

    Article  Google Scholar 

  46. Xu, R., Stansby, P., Laurence, D.: Accuracy and stability in incompressible sph (isph) based on the projection method and a new approach. J. Comput. Phys. 228(18), 6703–6725 (2009)

    Article  Google Scholar 

  47. Hosseini, S.M., Feng, J.J.: Pressure boundary conditions for computing incompressible flows with sph. J. Comput. Phys. 230(19), 7473–7487 (2011)

    Article  Google Scholar 

  48. Litvinov, S., Ellero, M., Hu, X., Adams, N.: A splitting scheme for highly dissipative smoothed particle dynamics. J. Comput. Phys. 229(15), 5457–5464 (2010)

    Article  Google Scholar 

  49. Trask, N., Maxey, M., Kim, K., Perego, M., Parks, M. L., Yang, K., Xu, J.: A scalable consistent second-order sph solver for unsteady low reynolds number flows, Computer Methods in Applied Mechanics and Engineering. doi:10.1016/j.cma.2014.12.027

  50. Domínguez, J.M., Crespo, A.J., Valdez-Balderas, D., Rogers, B., Gómez-Gesteira, M.: New multi-gpu implementation for smoothed particle hydrodynamics on heterogeneous clusters, Computer Physics Communications

  51. Tartakovsky, A., Meakin, P.: Modeling of surface tension and contact angles with smoothed particle hydrodynamics. Phys. Rev. E 72(2), 026301 (2005)

    Article  Google Scholar 

  52. Tartakovsky, A.M., Meakin, P.: Simulation of free-surface flow and injection of fluids into fracture apertures using smoothed particle hydrodynamics. Vadose Zone J. 4(3), 848–855 (2005)

    Article  Google Scholar 

  53. Allen, M.P., Tildesley, D.J.: Computer simulation of liquids. Oxford university press (1989)

  54. Monaghan, J.: Simulating free surface flows with {SPH}. J. Comput. Phys. 110(2), 399–406 (1994)

    Article  Google Scholar 

  55. Gomez-Gesteira, M., Rogers, B.D., Crespo, A.J.C., Dalrymple, R. A., Narayanaswamy, M., Dominguez, J. M.: Sphysics - development of a free-surface fluid solver—part 1: Theory and formulations. Comput. Geosci. 48, 289–299 (2012). doi:10.1016/j.cageo.2012.02.029

    Article  Google Scholar 

  56. Liu, G. R., Liu, M.B.: Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Publishing (2003)

  57. Monaghan, J.J.: Sph without a tensile instability. J. Comput. Phys. 159(2), 290–311 (2000)

    Article  Google Scholar 

  58. Maciá, F., Antuono, M., González, L.M., Colagrossi, A.: Theoretical analysis of the no-slip boundary condition enforcement in sph methods. Prog. Theor. Phys. 125(6), 1091–1121 (2011)

    Article  Google Scholar 

  59. Takeda, H., Miyama, S.M., Sekiya, M.: Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog. Theor. Phys. 92(5), 939–960 (1994)

    Article  Google Scholar 

  60. Pan, W., Bao, J., Tartakovsky, A.M.: Smoothed particle hydrodynamics continuous boundary force method for navier-stokes equations subject to a robin boundary condition. J. Comput. Phys. 259(0), 242–259 (2014)

    Article  Google Scholar 

  61. Ryan, E.M., Tartakovsky, A.M., Amon, C.: A novel method for modeling neumann and robin boundary conditions in smoothed particle hydrodynamics. Comput. Phys. Commun. 181(12), 2008–2023 (2010)

    Article  Google Scholar 

  62. Ryan, E., Tartakovsky, A., Recknagle, K., Khaleel, M., Amon, C.: Pore-scale modeling of the reactive transport of chromium in the cathode of a solid oxide fuel cell. J. Power Sources 196(1), 287–300 (2011)

    Article  Google Scholar 

  63. Ryan, E.M., Tartakovsky, A.M., Amon, C.: Pore-scale modeling of competitive adsorption in porous media. J. Contam. Hydrol. 120-121(0), 56–78 (2011)

    Article  Google Scholar 

  64. Bocquet, L., Barrat, J-L.: Flow boundary conditions from nano-to micro-scales. Soft Matter 3(6), 685–693 (2007)

    Article  Google Scholar 

  65. Peskin, C.S.: The immersed boundary method. Acta numerica 11, 479–517 (2002)

    Article  Google Scholar 

  66. Li, X., Lowengrub, J., Rätz, A., Voigt, A.: Solving pdes in complex geometries: a diffuse domain approach. Commun. Math. Sci. 7(1), 81 (2009)

    Article  Google Scholar 

  67. Pereira, G., Prakash, M., Cleary, P.: {SPH} modelling of fluid at the grain level in a porous medium. Appl. Math. Model. 35(4), 1666–1675 (2011)

    Article  Google Scholar 

  68. Zhang, C., Oostrom, M., Wietsma, T.W., Grate, J.W., Warner, M.G.: Influence of viscous and capillary forces on immiscible fluid displacement: Pore-scale experimental study in a water-wet micromodel demonstrating viscous and capillary fingering. Energy and Fuels 25(8), 3493–3505 (2011)

    Article  Google Scholar 

  69. Gouet-Kaplan, M., Tartakovsky, A.M., Berkowitz, B.: Interplay of resident and infiltrating water. Water Resour. Res. 45, W05416 (2009)

    Article  Google Scholar 

  70. Du, Q., Lehoucq, R., Tartakovsky, A.: Integral approximations to classical diffusion and smoothed particle hydrodynamics. Comput. Methods Appl. Mech. Eng. 286, 216–229 (2015). http://www.sciencedirect.com/science/article/pii/S0045782514004988

  71. Tartakovsky, G., Tartakovsky, A., Scheibe, T., Fang, Y., Mahadevan, R., Lovley, D.: Pore-scale simulation of microbial growth using a genome-scale metabolic model: implications for darcy-scale reactive transport. Adv. Water Resour. 59(0), 256–270 (2013)

    Article  Google Scholar 

  72. Tartakovsky, A.M., Meakin, P., Scheibe, T., Wood, B.: A smoothed particle hydrodynamics model for reactive transport and mineral precipitation in porous and fractured porous media. Water Resour. Res. 43, W05437 (2007)

    Google Scholar 

  73. Tartakovsky, A.M., Scheibe, T.D., Meakin, P.: Pore-scale model for reactive transport and biomass growth. J. Porous Media 12(5), 417–434 (2009)

    Article  Google Scholar 

  74. Tartakovsky, A., Meakin, P., Ward, A.: Smoothed particle hydrodynamics model of non-aqueous phase liquid flow and dissolution. Transp. Porous Media 76, 11–34 (2009)

    Article  Google Scholar 

  75. Pereira, G.G., Dupuy, P.M., Cleary, P.W., Delaney, G.W.: Comparison of permeability of model porous media between sph and lb, Progress in Computational Fluid Dynamics, an International Journal 12 (2) (2012) 176–186

  76. Monaghan, J., Kajtar, J.: Sph particle boundary forces for arbitrary boundaries. Comput. Phys. Commun. 180(10), 1811–1820 (2009)

    Article  Google Scholar 

  77. Peskin, C.S., McQueen, D.M.: A three-dimensional computational method for blood flow in the heart i. immersed elastic fibers in a viscous incompressible fluid. J. Comput. Phys. 81(2), 372–405 (1989)

    Article  Google Scholar 

  78. Hérault, A., Bilotta, G., Dalrymple, R.A.: Sph on gpu with cuda. J. Hydraul. Res. 48(S1), 74–79 (2010)

    Article  Google Scholar 

  79. Springel, V., Yoshida, N., White, S.D.: Gadget: a code for collisionless and gasdynamical cosmological simulations. New Astron. 6(2), 79–117 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Tartakovsky.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tartakovsky, A.M., Trask, N., Pan, K. et al. Smoothed particle hydrodynamics and its applications for multiphase flow and reactive transport in porous media. Comput Geosci 20, 807–834 (2016). https://doi.org/10.1007/s10596-015-9468-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-015-9468-9

Keywords

Navigation