Skip to main content
Log in

A benchmark for multi-rate surface complexation and 1D dual-domain multi-component reactive transport of U(VI)

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Nonequilibrium surface complexation reactions have been found to substantially affect U(VI) transport in natural porous media both in laboratory and field scale experiments. Nonequilibrium sorption behavior occurs on multiple time scales and is a result of diffusion-limited transport in immobile intra-grain and intra-aggregate pore water. Experimental data on U(VI) transport was successfully described with a recently developed reactive transport model that accounted for the nonequilibrium adsorption processes through the formulation of a multi-rate surface complexation model treating surface complexation as kinetic reactions. In the present work, a benchmark problem set has been developed for testing existing or newly developed reactive transport codes on their capability to simulate multi-rate surface complexation and dual-domain multi-component reactive transport of U(VI). The benchmark problem consists of three individual component problems on the basis of previous studies investigating the desorption of U(VI) from radionuclide-contaminated sediment from the Hanford 300A site, Washington, USA. Starting with a single-domain model considering constant hydrochemical conditions (component problem 1), the complexity of the model was stepwise increased. In the component problem 2 dual-domain first-order mass transfer was added. The principal problem also included dual-domain mass-transfer, but was further extended for changing hydrochemical conditions in the column’s inflow water, which resulted in drastic changes in the U(VI) desorption pattern due to surface complexation reactions. For the three individual component problems, the corresponding simulation results agree very well among four well-known and thoroughly tested independent reactive transport codes, indicating that the proposed benchmark problem set is a suitable test case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Grenthe, I., Fuger, J., Konings, R.J.M., Lemire, R.J., Muller, A.B., Nguyen-Trung, C., Wanner, H.: Chemical thermodynamics of uranium. Elsevier, New York (1992)

    Google Scholar 

  2. Kohler, M., Curtis, G.P., Kent, D.B., Davis, J.A.: Experimental investigation and modeling of uranium(VI) transport under variable chemical conditions. Water Resour. Res. 32(10), 3539–3551 (1996)

    Article  Google Scholar 

  3. Davis, J.A., Meece, D.E., Kohler, M., Curtis, G.P.: Approaches to surface complexation modeling of uranium (VI) adsorption on aquifer sediments. Geochim. Cosmochim. Ac. 68(18), 3621–3641 (2004)

    Article  Google Scholar 

  4. Bond, D.L., Davis, J.A., Zachara, J.M.: Uranium(VI) release from contaminated vadose zone sediments: estimation of potential contributions from dissolution and desorption. In: Barnett, M.O., Kent, D.B. (eds.) Adsorption of metals to geomedia II, pp. 375–416. Elsevier, Amsterdam (2008)

  5. Qafoku, N.P., Zachara, J.M., Liu, C., Gassman, P.L., Qafoku, O.S., Smith, S.C.: Kinetic desorption and sorption of U(VI) during reactive transport in a contaminated Hanford sediment. Environ. Sci. Technol. 39(7), 3157–3165 (2005)

    Article  Google Scholar 

  6. Liu, C., Zachara, J.M., Yantasee, W., Majors, P.D., McKinley, J.P.: Microscopic reactive diffusion of uranium contaminated sediments at Hanford, United States. Water Resour. Res. (2006). doi:10.1029/2006WR005031

  7. Stubbs, J.E., Veblen, L.A., Elbert, D.C., Zachara, J.M., Davis, J.A., Veblen, D.R.: Newly recognized hosts for uranium in the Hanford Site vadose zone. Geochim. Cosmochim. Ac. 73, 1563–1576 (2009)

    Article  Google Scholar 

  8. Fox, P.M., Davis, J.A., Hay, M.B., Conrad, M.E., Campbell, K.M., Williams, K.H., Long, P.E.: Rate-limited U(VI) desorption during a small-scale tracer test in a heterogeneous uranium-contaminated aquifer. Water Resour. Res. (2012). doi:10.1029/2011WR011472

  9. Donado, L.D., Sanchez-Vila, X., Dentz, M., Carrera, J., Bolster, D.: Multicomponent reactive transport in multicontinuum media. Water Resour. Res. (2009). doi:10.1029/2008WR006823

  10. Willmann, M., Carrera, J., Sanchez-Vila, X., Silva, O., Dentz, M.: Coupling of mass transfer and reactive transport for nonlinear reactions in heterogeneous media. Water Resour. Res. (2010). doi:10.1029/2009WR007739

  11. Liu, C., Zachara, J.M., Qafoku, N.P., Wang, Z.: Scale-dependent desorption of uranium from contaminated subsurface sediments. Water Resour. Res. (2008). doi:10.1029/2007WR006478

  12. Greskowiak, J., Hay, M.B., Prommer, H., Liu, C., Post, V.E.A., Ma, R., Davis, J.A., Zheng, C., Zachara, J.M.: Simulating adsorption of U(VI) under transient groundwater flow and hydrochemistry - Physical versus chemical non-equilibrium model. Water Resour. Res. (2011). doi:10.1029/2010WR010118

  13. Liu, C., Shi, S., Zachara, J.M.: Kinetics of uranium (VI) desorption from contaminated sediments: Effect of geochemical conditions and model evaluation. Environ. Sci. Technol. 43, 6560–6566 (2009)

    Article  Google Scholar 

  14. Yin, J., Haggerty, R., Stoliker, D.L., Kent, D.B., Istok, J.D., Greskowiak, J., Zachara, J.M.: Transient groundwater chemistry near a river: effects on U(VI) transport in laboratory column experiments. Water Resour. Res. (2011). doi:10.1029/2010WR009369

  15. Haggerty, R., Gorelick, S.M.: Multiple-rate mass transfer for modelling diffusion and surface reactions in media with pore scale heterogeneity. Water Resour. Res. 31(8), 2383–2400 (1995)

    Article  Google Scholar 

  16. Culver, T.B., Hallisey, S.P., Sahoo, D., Deitsch, J.J., Smith, J.A.: Modeling the desorption of organic contaminants from long-term contaminated soil using distributed mass transfer rates. Environ. Sci. Technol. 31, 1581–1588 (1997)

    Article  Google Scholar 

  17. Ma, R., Zheng, C., Prommer, H., Greskowiak, J., Liu, C., Zachara, J.M., Rockhold, M.: A field-scale reactive transport model for U(VI) migration influenced by coupled multirate mass transfer and surface complexation reactions. Water Resour. Res. (2010). doi:10.1029/2009WR008168

  18. Ma, R., Liu, C., Greskowiak, J., Prommer, H., Zachara, J., Zheng, C.: Influence of calcite on uranium(VI) reactive transport in the groundwater–river mixing zone. J. Cont. Hydrol. 156, 27–37 (2014)

    Article  Google Scholar 

  19. Ma, R., Zheng, C., Liu, C., Greskowiak, J., Prommer, H., Zachara, J.M.: Assessment of controlling processes for field-scale uranium reactive transport under highly transient flow conditions (2014). doi:10.1002/2013WR013835

  20. Hammond, G.E., Lichtner, P.C.: Field-scale model for the natural attenuation of uranium at the Hanford 300 Area using high-performance computing. Water Resour. Res. (2010). doi:10.1029/2009WR008819

  21. Gwo, J.P., D’Azevedo, E.F., Frenzel, H., Mayes, M., Yeh, G.T., Jardine, P.M., Salvage, K.M., Hoffman, F.M.: HBGC123D: a high performance computer model of coupled hydrogeological and biogeochemical processes. Comput. Geosci. 27, 1231–1242 (2001)

    Article  Google Scholar 

  22. Gwo, J.P., Mayes, M.A., Jardine, P.M.: Quantifying the Physical and chemical mass transfer processes for the fate and transport of Co(II)EDTA in a partially-weathered limestone-shale saprolite. J. Cont. Hydrol. 90, 184–202 (2007)

    Article  Google Scholar 

  23. Cheng, L.: Dual porosity reactive transport modeling, PhD thesis (2005)

  24. Mayer, K.U., Frind, E.O., Blowes, D.W.: Multicomponent reactive transport modeling in variably saturated porous media using a generalized formulation for kinetically controlled reactions. Water Resour. Res. (2002). doi:10.1029/2001WR000862

  25. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th: Operator-splitting errors in coupled reactive transport codes for transient variably saturated flow and contaminant transport in layered soil profiles. J. Cont. Hydrol. 88(3–4), 197–218 (2006)

    Article  Google Scholar 

  26. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th: Modeling coupled hydrologic and chemical processes: long-term uranium transport following phosphorus fertilization. Vad. Zone J. 7(2), 698–711 (2008)

    Article  Google Scholar 

  27. Jacques, D., Šimu̇nek, J., Mallants, D., van Genuchten, M.Th: Modelling coupled water flow, solute transport and geochemical reactions affecting heavy metal migration in a podzol soil. Geoderma 145(3–4), 449–461 (2008)

    Article  Google Scholar 

  28. Prommer, H., Barry, D.A., Zheng, C.: MODFLOW/MT3DMS based reactive multicomponent transport modelling. Ground Water 41(2), 247–257 (2003)

    Article  Google Scholar 

  29. Steefel, C.I., Appelo, C.A.J., Arora, B., Jacques, D., Kalbacher, T., Kolditz, O., Lagneau, V., Lichtner, P.C., Mayer, K.U., Meeussen, J.C.L., Molins, S., Moulton, D., Shao, H., Šimůnek, J., Spycher, N., Yabusaki, S.B., Yeh, G.T.: Reactive transport codes for subsurface environmental simulation. Comput. Geosci. (2014). doi:10.1007/s10596-014-9443-x

  30. Greskowiak, J., Prommer, H., Liu, C., Post, V.E.A., Ma, R., Zheng, C., Zachara, J.M.: Comparison of parameter sensitivities between a laboratory and field scale model of uranium transport in a dual domain, distributed-rate reactive system. Water Resour. Res. (2010). doi:10.1029/2009WR008781

  31. Parkhurst, D.L., Appelo, C.A.J.: User’s guide to PHREEQC (Version 2) - a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geol. Surv. Water Resour. Invest. Rep., 99–4259 (1999)

  32. Ma, R., Zheng, C.: Not All mass transfer rate coefficients are created equal. Ground Water 49, 772–774 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janek Greskowiak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Greskowiak, J., Gwo, J., Jacques, D. et al. A benchmark for multi-rate surface complexation and 1D dual-domain multi-component reactive transport of U(VI). Comput Geosci 19, 585–597 (2015). https://doi.org/10.1007/s10596-014-9457-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9457-4

Keywords

Navigation