Skip to main content

Advertisement

Log in

Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures

  • ORIGINAL PAPER
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

In this paper, the material point method (MPM) is presented as a tool for simulating large deformation, gravity-driven landslides. The primary goal is to assess the interaction of these flow-like events with the built environment. This includes an evaluation of earthen mounds when energy dissipating devices are placed in the path of a snow avalanche. The effectiveness of the embankments is characterized using displacement, velocity, mass, and energy measures. A second example quantifies the force interaction between a landslide and a square rigid column. Multiple slide approach angles are considered, and various aspects of the impact force are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, S., Andersen, L.: Modelling of landslides with the material-point method. Comput. Geosci. 14, 137–147 (2010)

    Article  Google Scholar 

  2. Ataie-Ashtiani, B., Shobeyri, G.: Numerical simulation of landslide impulsive waves by incompressible smoothed particle hydrodynamics. Int. J. Numer. Methods Fluids 56(2), 209–32 (2008). doi:10.1002/fld.1526

    Article  Google Scholar 

  3. Brown, R.L., Lang, T.E., St Lawrence, W.F., Bradley, C.C.: A failure criterion for snow. J. Geophys. Res. 78(23), 4950–4958 (1973)

    Article  Google Scholar 

  4. Chen, S.C., Peng, S.H., Capart, H.: Two-layer shallow water computation of mud flow intrusions into quiescent water. J. Hydraul. Res. 45(1), 13–25 (2007)

    Article  Google Scholar 

  5. Denlinger, R., Iverson, R.: Flow of variably fluidized granular masses across three-dimensional terrain. 2. Numerical predictions and experimental tests. J. Geophys. Res. 106(B1), 553–66 (2001)

    Article  Google Scholar 

  6. Guimaraes, R., Trancoso, R., De Carvalho, G., Fernandes, N., Do Amaral Vargas, E.: De Martins E (2008) Identification of the affected areas by mass movement through a physically based model of landslide hazard combined with a two-dimensional flood routing model for simulating debris flow. In: International Geoscience and Remote Sensing Symposium (IGARSS), pp. 3035–3038, Barcelona

  7. Highland, L.M.: Estimating landslide losses—preliminary results of a seven-state pilot project. Tech. Rep. 2006:1032, USGS (2006). http://pubs.usgs.gov/of/2006/1032/pdf/OFR-2006-1032.pdf

  8. Iverson, R., Denlinger, R.: Flow of variably fluidized granular masses across three-dimensional terrain. 1. coulomb mixture theory. J. Geophys. Res 106(B1), 537–52 (2001)

    Article  Google Scholar 

  9. Iverson, R., Vallance, J.: New views of granular mass flows. Geology 29(2), 115–118 (2001). doi:10.1130/0091-7613(2001)029<0115:NVOGMF>2.0.CO;2

    Article  Google Scholar 

  10. Iverson, R., Costa, J., LaHusen, R.: Debris-flow flume at H.J. Andrews Experimental Forest, Oregon, open-file report 92-483. Tech. rep., U.S. Geological Survey (1992). http://vulcan.wr.usgs.gov/Projects/MassMovement/Publications/OFR92-483

  11. Kulhawy, F., Mayne, P. (eds.): Manual on estimating soil properties for foundation design (EPRI). Cornel University (1990)

  12. Lin, M.L., Wang, K.L.: Seismic slope behavior in a large-scale shaking table model test. Eng. Geol. 86(2-3), 118–133 (2006). doi:10.1016/j.enggeo.2006.02.011

    Article  Google Scholar 

  13. Mackenzie-Helnwein, P., Arduino, P., Shin, W., Moore, J.A., Miller, G.R.: Modeling strategies for multiphase drag interactions using the material point method. Int. J. Numer. Methods Eng. 83(3), 295–322 (2010)

    Google Scholar 

  14. Mast, C., Mackenzie-Helnwein, P., Arduino, P., Miller, G., Shin, W.: Mitigating kinematic locking in the material point method. J. Comput. Phys. 231(16), 5351–5373 (2012)

    Article  Google Scholar 

  15. Mast, C., Arduino, P., Mackenzie-Helnwein, P., Miller, G.: Simulating granular column collapse using the material point method. Acta Geotechnica Submitted for publication (2013)

  16. Mast, C.M.: Modeling landslide-induced flowinteractions with structures using the material point method. PhD thesis. WA, Seattle (2013)

    Google Scholar 

  17. McDougall, S., Hungr, O.: A model for the analysis of rapid landslide motion across three-dimensional terrain. Can. Geotech. J. 41(6), 1084–1097 (2004). doi:10.1139/T04-052

    Article  Google Scholar 

  18. Moriguchi, S., Borja, R.I., Yashima, A., Sawada, K.: Estimating the impact force generated by granular flow on a rigid obstruction. Acta Geotech. 4(1), 57–71 (2009)

    Article  Google Scholar 

  19. Nicot, F.: Constitutive modelling of snow as a cohesive-granular material. Granul. Matter 6, 47–60 (2004). doi:10.1007/s10035-004-0159-9

    Article  Google Scholar 

  20. Petrovic, J.J.: Review mechanical properties of ice and snow. J. Mater. Sci. 38, 1–6 (2003)

    Article  Google Scholar 

  21. Reid, M., Brien, D., LaHusen, R., Roering, J., De La Fuente, J., Ellen, S.: Debris-flow initiation from large, slow-moving landslides. In: International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, Davos, Switzerland, vol 1, pp. 155–166 (2003)

  22. Sadeghirad, A., Brannon, R., Burghardt, J.: A convected particle domain interpolation technique to extend applicability of the material point method for problems involving massive deformations. Int. J. Numer. Methods Eng. 86(12), 1435–1456 (2011)

    Article  Google Scholar 

  23. Salm, B.: Mechanical properties of snow. Rev. Geophys. 20(1), 1–19 (1982)

    Article  Google Scholar 

  24. Savage, S., Iverson, R.: Surge dynamics coupled to pore-pressure evolution in debris flows. In:International Conference on Debris Flow Hazards Mitigation: Mechanics, Prediction, and Assessment, Proceedings, Davos, Switzerland, vol 1, pp. 503–514 (2003)

  25. Shin, W., Miller, G.R., Arduino, P., Mackenzie-Helnwein, P.: Dynamic meshing for material point method computations. Int. J. Comput. Math. Sci. 4(8), 379–387 (2010)

    Google Scholar 

  26. Simo, J.C.: Numerical analysis and simulation of plasticity. In: Ciarlet, P., Lions, J. (eds.) Numerical methods for solids (Part 3) numerical methods for fluids (Part 1), handbook of numerical analysis, vol. 6, pp. 183–499. Elsevier (1998)

  27. Sulsky, D., Chen, Z., Schreyer, H.: A particle method for history-dependent materials. Comput. Methods Appl. Mech. Eng. 118(1-2), 179–196 (1994)

    Article  Google Scholar 

  28. Sulsky, D., Zhou, S., Schreyer, H.L.: Application of a particle-in-cell method to solid mechanics. Comput. Phys. Commun. 87(1–2), 236–252 (1995)

    Article  Google Scholar 

  29. Swan, C.C.: A smooth, three-surface elasto-plastic cap model: Rate formulation, integration algorithm, and tangent operators (2006)

  30. Teufelsbauer, H., Wang, Y., Pudasaini, S., Borja, R., Wu, W.: DEM simulation of impact force exerted by granular flow on rigid structures. Acta Geotech. 6(3), 119–133 (2011)

    Article  Google Scholar 

  31. Tohari, A., Nishigaki, M., Komatsu, M.: Laboratory rainfall-induced slope failure with moisture content measurement. J. Geotech. Geoenviron. 133(5), 575–587 (2007). doi:10.1061/(ASCE)1090-0241(2007)133:5(575)

    Article  Google Scholar 

  32. Wieckowski, Z.: Modeling of silo discharge and filling problems by the material point method. Task Q. 7(4), 701–721 (2003)

    Google Scholar 

  33. Wieckowski, Z.: The material point method in large strain engineering problems. Comput. Methods Appl. Mech. Eng. 193(39-41), 4417–4438 (2004)

    Article  Google Scholar 

  34. Zanuttigh, B., Lamberti, A.: Experimental analysis of the impact of dry avalanches on structures and implication for debris flows. J. Hydraul. Res. 44(4), 522–534 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Arduino.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mast, C.M., Arduino, P., Miller, G.R. et al. Avalanche and landslide simulation using the material point method: flow dynamics and force interaction with structures. Comput Geosci 18, 817–830 (2014). https://doi.org/10.1007/s10596-014-9428-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-014-9428-9

Keywords

Navigation