Skip to main content
Log in

Finite element methods for variable density flow and solute transport

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Saltwater intrusion into coastal freshwater aquifers is an ongoing problem that will continue to impact coastal freshwater resources as coastal populations increase. To effectively model saltwater intrusion, the impacts of increased salt content on fluid density must be accounted for to properly model saltwater/freshwater transition zones and sharp interfaces. We present a model for variable density fluid flow and solute transport where a conforming finite element method discretization with a locally conservative velocity post-processing method is used for the flow model and the transport equation is discretized using a variational multiscale stabilized conforming finite element method. This formulation provides a consistent velocity and performs well even in advection-dominated problems that can occur in saltwater intrusion modeling. The physical model is presented as well as the formulation of the numerical model and solution methods. The model is tested against several 2-D and 3-D numerical and experimental benchmark problems, and the results are presented to verify the code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Post, V., Abarca, E.: Preface: saltwater and freshwater interactions in coastal aquifers. Hydrogeol. J. 18, 1–4 (2010)

    Article  Google Scholar 

  2. Bear, J., Cheng, A.D.: Theory and applications of transport in porous media: modeling groundwater flow and contaminant transport. Springer, New York (2010)

    Book  Google Scholar 

  3. Diersch, H.J., Kolditz, O.: Variable-density flow and transport in porous media: Approaches and challenges. Adv. Water Resour. 25, 899–944 (2002)

    Article  Google Scholar 

  4. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible Naviar-Stokes equations. Comput. Methods Appl. Mech. Engrg. 32, 199–259 (1982)

    Article  Google Scholar 

  5. Hughes, T.J.R., Mallet, M., Mizukami, A.: A new finite element formulation for computational fluid dynamics: II. beyond supg. Comput. Methods Appl. Mech. Eng. 54, 341–355 (1986)

    Article  Google Scholar 

  6. Voss, C., Souza, W.: Variable density flow and solute transport simulation of regional aquifers containing a narrow freshwater-saltwater transition zone. Water Resour. Res. 23(10), 1851–1866 (1987)

    Article  Google Scholar 

  7. Knabner, P., Frolkovič, P.: Consistent velocity approximation for finite volume or element discretizations of density driven flow in porous media. In: Aldama, A.A., et al. (ed.) Computational Methods in Water Resources XI, vol. 1: Computational methods in subsurface flow and transport problems., pp. 340–352. Southhampton: Computational Mechanics Publication (1996)

    Google Scholar 

  8. Farthing, M.W., Kees, C., Miller, C.: Mixed finite element methods and higher order temporal approximations for variably saturated groundwater flow. Adv. Water Resour. 27, 373–394 (2004)

    Google Scholar 

  9. Kees, C., Farthing, M., Dawson, C.: Locally conservative, stabilized finite element methods for variably saturated flow. Comput. Methods Appl. Mech. Eng. 197, 4610–4625 (2008)

    Article  Google Scholar 

  10. Ackerer, P., Younes, A.: Efficient approximations for the simulation of density driven flow in porous media. Adv. Wat. Resour. 31, 15–27 (2008)

    Article  Google Scholar 

  11. Mazzia, A., Putti, M.: Mixed-finite element and finite volume discretizations for heavy brine simulations in groundwater. J. Comput. Appl. Math. 147, 191–213 (2002)

    Article  Google Scholar 

  12. Hughes, T., Feijóo, G., Mazzei, L., Quincy, J.: The variational multiscale method—a pardigm for computational mechanics. Comput. Methods Appl. Mech. 166, 3–24 (1998)

    Article  Google Scholar 

  13. Larson, M., Niklasson, A.: A conservative flux for the continuous Galerkin method based on discontinuous enrichment. CALCOLO 41, 65–76 (2004)

    Article  Google Scholar 

  14. Franca, L.P., Hauke, G., Masud, A.: Revisiting stabilized finite element methods for the advective–diffusive equation. Comput. Methods Appl. Mech. Engrg. 195, 1560–1572 (2006)

    Article  Google Scholar 

  15. Lin, H.C., Richards, D.R., Yeh, G.T., Cheng, J.R.C., Cheng, H.P., Jones., N.L.: Femwater: A three-dimensional finite element computer model for simulating density-dependent flow and transport in variably saturated media. Report chl-97-12, U.S. Army Research & Development Center (1997)

  16. Diersch, H.G.: FEFLOW finite element subsurface flow and transport simulation system. Reference manual. Germany: WASY GmbH, Berlin (2005)

    Google Scholar 

  17. Voss, C.: A finite-element simulation model for saturated–unsaturated fluid-density-dependent ground-water flow with energy transport or chemically-reactive single-species solute transport. US Geol. Surv. Water Resour. Invest. (Rep 84-4369) (1984)

  18. Frolkovič, P.: Consistent velocity approximation for density driven flow and transport. In: Van Keer R. et al. (ed.) Advanced Computational Methods in Engineering, Part 2., pp. 603–611. Maastricht: Shaker Publishing (1998)

    Google Scholar 

  19. Dentz, M., Tartakovsky, D., Abarca, E., Guadagnini, A., Sanchez-Vila, X., Carrera, J.: Variable-density flow in porous media. J. Fluid. Mech. 561, 209–235 (2006)

    Article  Google Scholar 

  20. Hassanizadeh, S.: Modeling species transport by concentrated brine in aggregated porous media. Transport Porous Med. 3, 299–318 (1988)

    Google Scholar 

  21. Herbert, A., Jackson, C., Lever, D.: Coupled groundwater flow and solute transport with fluid density strongly dependent upon concentration. Water Resour. Res. 24(10), 1781–1795 (1988)

    Article  Google Scholar 

  22. Bear, J.: Dynamics of Fluids in Porous Media. Elsevier, New York (1972)

    Google Scholar 

  23. Bear, J., Cheng, A.D., Sorek, S., Ouazar, D., Herrera, I. (eds.): Theory and Applications of Transport in Porous Media: Seawater Intrusion in Coastal Aquifers - Concepts, Methods and Practices, chap. 5. Kluwer Academic, Dordrecht (1999)

    Google Scholar 

  24. Lever, D., Jackson, C.: On the equations for the flow of concentrated salt solution through a porous medium. Tech. Rep. DOE/RW/85.100, U.K. DOE Report (1985)

  25. Farthing, M., Kees, C.E.: Evaluating finite element methods for the level set equation. Technical Report TR-09-11, USACE Engineer Research and Development Center (2009)

  26. Kees, C.E., Farthing, M.W.: Parallel computational methods and simulation for coastal and hydraulic applications using the Proteus toolkit. In: Supercomputing11: Proceedings of the PyHPC11 Workshop (2011)

  27. Balay, S., Brown, J., Buschelman, K., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc Web page. http://www.mcs.anl.gov/petsc (2011). Accessed 12 Dec 2011

  28. Balay, S., Brown, J., Buschelman, K., Eijkhout, V., Gropp, W.D., Kaushik, D., Knepley, M.G., McInnes, L.C., Smith, B.F., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11—Revision 3.2, Argonne National Laboratory (2011)

  29. Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser, Basel (1997)

  30. Demmel, J.W., Eisenstat, S.C., Gilbert, J.R., Li, X.S., Liu, J.W.H.: A supernodal approach to sparse partial pivoting. SIAM J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  Google Scholar 

  31. Li, X.S., Demmel, J.W.: SuperLU_DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems. ACM Trans. Math. Softw. 29(2), 110–140 (2003)

    Article  Google Scholar 

  32. Kolditz, O., Ratke, R., Diersch, H.J., Zielke, W.: Coupled groundwater flow and transport: 1. Verification of variable density flow and transport models. Adv. Water Resour. 21(1), 27–46 (1987)

    Article  Google Scholar 

  33. Voss, C., Simmons, C., Robinson, N.: Three-dimensional benchmark for variable-density flow and transport simulation: matching semi-analytical stability modes for steady unstable convection in an inclined porous box. Hydrogeol. J. 18, 5–23 (2010)

    Article  Google Scholar 

  34. NEA: The international hydrocoin project, level 1 code verification. Tech. rep., Swedish Nuclear Power Inspectorate and OECD/Nuclear Energy Agency, Paris (1988)

  35. Goswami, R., Clement, T.: Laboratory-scale investigation of saltwater intrusion dynamics. Water Resour. Res. 43, 1–11 (2007)

    Article  Google Scholar 

  36. Oswald, S., Kinzelbach, W.: Three-dimensional physical benchmark experiments to test variable-density flow models. J. Hydrol. 290, 22–44 (2004)

    Article  Google Scholar 

  37. Henry, H.: Effects of dispersion on salt encroachment in coastal aquifers, sea water in coastal aquifers. Geol. Surv. Water-supply Pap. 1613-C (1964)

  38. Simpson, M., Clement, T.: Improving the worthiness of the Henry problem as a benchmark for density-dependent groundwater flow models. Water Resour. Res. 40, 1–11 (2004)

    Article  Google Scholar 

  39. Simpson, M.J., Clement, T.: Theoretical analysis of the worthiness of Henry and Elder problems as benchmarks of density-dependent groundwater flow models. Adv. Water Resour. 26, 17–31 (2003)

    Article  Google Scholar 

  40. Abarca, E., Carrera, J., Sánchez-Vila, X., Dentz, M.: Anisotropic dispersive Henry problem. Adv. Water Resour. 30, 913–926 (2007)

    Article  Google Scholar 

  41. Guo, W., Langevin, C.D.: User’s guide to SEAWAT: a computer program for simulation of three-dimensional variable-density groundwater flow. US Geol. Surv. Water-Resour. Invest. (Book 6, Chapter A7) (2002)

  42. Post, V., Kooi, H., Simmons, C.: Using hydraulic head measurements in variable-density ground water flow analyses. Ground Water 45, 664–671 (2007)

    Article  Google Scholar 

  43. Johannsen, K., Kinzelback, W., Oswald, S., Wittum, G.: The saltpool benchmark problem—numerical simulation of saltwater upconing in a porous medium. Adv. Water Resour. 25, 335–348 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. J. Povich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Povich, T.J., Dawson, C.N., Farthing, M.W. et al. Finite element methods for variable density flow and solute transport. Comput Geosci 17, 529–549 (2013). https://doi.org/10.1007/s10596-012-9330-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-012-9330-2

Keywords

Navigation