Skip to main content
Log in

Electron Transfer Reactions in the Chemistry of Di- and Tetrahydropyridines

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

The mechanism of electrochemical oxidation of 1,2,3,4-tetrahydropyridines in acetonitrile has been studied. A single reversible one-electron oxidation is registered in the accessible voltage range. The reversibility of the process is sensitive to the traces of oxygen in solution. The electrochemically generated radical cation of tetrahydropyridine may act as a mediator in an indirect oxidation of dihydropyridines if the difference in oxidation potentials between two compounds is less than 200 mV. During the indirect oxidation of 2,4,6-trimethyl-1,4-dihydropyridine-3,5-dicarboxylic acid diethyl ester to 3,5-bis(ethoxycarbonyl)-2,4,6-trimethylpyridinium perchlorate, some of the starting tetrahydropyridine is protonated, thus making it anodically inactive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. Independently the electrode was tested with the well-known 1e reversible redox reaction benzo-quinone/semiquinone in MeCN. It gave the same value N = 0.35.

References

  1. P. Molina, A. Pastor, and M. J. Vilaplana, J. Org. Chem., 61, 8094 (1996).

    Article  CAS  Google Scholar 

  2. L. M. Sayre, P. K. Arora, S. C. Feke, and F. L. Urbach, J. Am. Chem. Soc., 108, 2464 (1986).

    Article  CAS  Google Scholar 

  3. T. Shono, in: Z. Rappoport (editor), The Chemistry of Enamines, Wiley (1994).

  4. V. D. Parker, Acta Chem. Scand., 52, 145 (1998).

    Article  CAS  Google Scholar 

  5. W. J. Albery and S. Bruckenstein, Trans. Faraday Soc., 62, 1920 (1966).

    Article  CAS  Google Scholar 

  6. J. Ogle, J. Stradins, and L. Baumane, Electrochim. Acta, 39, 73 (1994).

    Article  CAS  Google Scholar 

  7. A. Anne, P. Hapiot, J. Moiroux, P. Neta, and J. M. Saveant, J. Am. Chem. Soc., 114, 4694 (1992).

    Article  CAS  Google Scholar 

  8. J. Ludvik, J. Volke, and J. Klima, Electrochim. Acta, 32, 1063 (1987).

    Article  CAS  Google Scholar 

  9. H. R. Memarian, M. Ghazaie, and S. K. Mehneh, Z. Naturforsch., B: J. Chem. Sci., 64b, 1187 (2009).

    Google Scholar 

  10. B. Turovska, I. Goba, I. Turovskis, S. Grinberga, S. Belyakov, S. Stupnikova, E. Liepinsh, and J. Stradins, Khim. Geterotsikl. Soedin., 1829 (2008). [Chem. Heterocycl. Compd., 44, 1483 (2008).]

    Google Scholar 

  11. J. Stradins, J. Ogle, V. Kadysh, L. Baumane, R. Gavars, and G. Duburs, J. Electroanal. Chem., 226, 103 (1987).

    Article  CAS  Google Scholar 

  12. K. Daasbjerg, S. U. Pedersen, and H. Lund, Acta Chem. Scand., 45, 424 (1991).

    Article  CAS  Google Scholar 

  13. L. V. Jorgensen and H. Lund, Acta Chem. Scand., 48, 759 (1994).

    Article  CAS  Google Scholar 

  14. L. Eberson, Acta Chem. Scand., 53, 751 (1999).

    Article  CAS  Google Scholar 

  15. K. Broka and J. Stradins, Latv. J. Chem., 2, 245 (1993).

    Google Scholar 

  16. R. G. Pearson, J. Am. Chem. Soc., 108, 6109 (1986).

    Article  CAS  Google Scholar 

  17. J. F. Evans and H. N. Blount, J. Am. Chem. Soc., 100, 4191 (1978).

    Article  CAS  Google Scholar 

  18. U. Rosentreter, Synthesis, 210 (1985).

  19. D. Kh. Mutsenietse, V. K. Lusis, and G. Ya. Duburs, Khim. Geterotsikl. Soedin., 1225 (1982). [Chem. Heterocycl. Compd., 18, 942 (1982).]

  20. J. R. Pfister, Synthesis, 689 (1990).

  21. B. Loev, M. M. Goodman, K. M. Snader, R. Tedeschi, and E. Macko, J. Med. Chem. 17, 956 (1974).

    Article  CAS  Google Scholar 

  22. X. Wang, H. Gong, Z. Quan, L. Li, and H. Ye, Synth. Commun., 41, 3251 (2011).

    Article  CAS  Google Scholar 

  23. A. A. Krauze, E. E. Liepinsh, Z. A. Kalme, Yu. E. Pelchers, and G. Ya. Duburs, Khim. Geterotsikl. Soedin., 1504 (1984). [Chem. Heterocycl. Compd., 20, 1241 (1984).]

    Google Scholar 

  24. M. Anniyappan, D. Muralidharan, and P. T. Perumal, Tetrahedron, 58, 5069 (2002).

    Article  CAS  Google Scholar 

Download references

The work was financially supported by the Latvian Council of Science (grant 09-1558) and by the European Regional Development Fund (ERDF) project No. 2DP/2.1.1.1.0/10/APIA/VIAA/065.

The authors thank Dr. Chem. E. Liepinsh for NMR analysis of epimers on the Bruker DMX-600 spectrometer and Dr. Chem. S. Grinberga for GC-MS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Turovska.

Additional information

Deceased (I. Turovskis).

Publushed in Khimiya Geterotsiklicheskikh Soedinenii, No. 11, pp. 1770-1782, November, 2013.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turovska, B., Goba, I., Lielpetere, A. et al. Electron Transfer Reactions in the Chemistry of Di- and Tetrahydropyridines. Chem Heterocycl Comp 49, 1640–1652 (2014). https://doi.org/10.1007/s10593-014-1415-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-014-1415-5

Keywords

Navigation