Skip to main content
Log in

Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Isolation-by-distance is recognized as a useful model for describing the spatial distribution of gene frequencies depending on dispersal characteristics of the species under study. However, some species may have populations that occupy the same geographic distribution during the breeding season yet reproduce at different time periods resulting in isolation-by-time (IBT). IBT may complicate investigations of spatial population structure if samples are obtained from multiple discrete time periods or may remain undiscovered if surveys are conducted with limited temporal scope. IBT has been observed in several studies of anadromous fishes (primarily salmon) as well as a few examples in taxa such as frogs, plants, birds and insects, but has not been rigorously tested in freshwater fishes. In this study, we assessed spatial and temporal genetic variation and tested for IBT in Dourado (Salminus brasiliensis), a large and commercially-important potamodromous fish species found in multiple river basins of South America. Using 11 polymorphic microsatellite loci, we estimated genetic differentiation of 317 adult Dourado collected monthly during the breeding season at three locations along the Uruguay River in southern Brazil. Analyses identified three populations that were clustered in time (i.e. early, middle and late), suggesting an IBT pattern of population structure with no significant spatial structure. Our results contribute to the mounting evidence across a wide range of taxa that suggests IBT may be more common that currently considered, even for species with very high dispersal capabilities such as potamodromous fishes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aguirre-Pabón J, Barandica NJ, García CL (2013) Mitochondrial DNA variation of the bocachico Prochilodus magdalenae (Characiformes, Prochilodontidae) in the Magdalena River Basin, Colombia. Aquat Conserv 23:594–605

    Article  Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ashikaga FY, Orsi ML, Oliveira C, Senhorini JA (2015) The endangered species Brycon orbignyanus: genetic analysis and definition of priority areas for conservation. Environ Biol Fish 98:1845–1855

    Article  Google Scholar 

  • Barroca T, Arantes F, Magalhães B, Kalapothakis E (2012) Genetic diversity and population structure of P. costatus and P. argenteus preceding dam construction in the Paraopeba River, São Francisco River Basin, Minas Gerais, Brazil. Open J Genet 2:121–130

    Article  Google Scholar 

  • Barroso RM, Hilsdorf AWS, Moreira HLM, Traub-Cseko YM (2003) Identification and characterization of microsatellites loci in B. opalinus (Cuvier, 1819) (Characiforme, Characidae, Bryconiae). Mol Ecol Notes 3:297–298

    Article  CAS  Google Scholar 

  • Behrmann-Godel J, Gerlach G, Eckmann R (2006) Kin and population recognition in sympatric Lake Constance perch (Perca fluviatilis L.): can assortative shoaling drive population divergence? Behav Ecol Sociobiol 59:461–468

    Article  Google Scholar 

  • Berdugo GO, Barandica JCN (2014) Genetic diversity and population structure of bocachico P. magdalenae (Pisces, Prochilodontidae) in the Magdalena river basin and its tributaries, Colombia. Genet Mol Biol 37:37–45

    Article  CAS  PubMed  Google Scholar 

  • Bessert ML, Ortí G (2008) Genetic effects of habitat fragmentation on blue sucker populations in the upper Missouri River (C. elongatus Lesueur, 1918). Conserv Genet 9:821–832

    Article  Google Scholar 

  • Braga-Silva A, Galetti PM Jr (2016) Evidence of isolation by time in freshwater migratory fish P. costatus (Characiformes, Prochilodontidae). Hydrobiologia 765:159–167

    Article  Google Scholar 

  • Brannon EL (1987) Mechanisms stabilizing salmonid fry emergence timing. In: Smith HD, Margolis L, Wood CC (eds) Sockeye salmon (Oncorhynchus nerka) population biology and future management. Canadian Special Publication of Fisheries and Aquatic Sciences, vol 96, pp 120–124

  • Brodersen J, Nilsson PA, Hansson LA (2008) Condition-dependent individual decision-making determines cyprinid partial migration. Ecology 89:1195–1200

    Article  PubMed  Google Scholar 

  • Carolsfield J, Harvey B, Ross C, Baer A (2003) Migratory fishes of South America: biology, fisheries and conservation status. International Development Research Centre and the World Bank, Victoria, Canada

    Google Scholar 

  • Carvalho-Costa LF, Hatanaka T, Galetti PM Jr (2008) Evidence of lack of population substructuring in the Brazilian freshwater fish P. costatus. Genet Mol Ecol 31:377–380

    CAS  Google Scholar 

  • Coulson MW, Bradbury IR, Bentzen P (2006) Temporal genetic differentiation: continuous v. discontinuous spawning runs in anadromous rainbow smelt O. mordax (Mitchill). J Fish Biol 69:209–216

    Article  Google Scholar 

  • Daïnou K, Laurenty E, Mahy G, Doucet JL (2012) Phenological patterns in a natural population of a tropical timber tree species, Milicia excelsa (Moraceae): evidence of isolation by time and its interaction with feeding strategies of dispersers. Am J Bot 99:1453–1463

    Article  PubMed  Google Scholar 

  • Delfino R, Baigun C (1985) Marcaciones de peces em el embalse de Salto Grande, rio Uruguay (Argentina–Uruguay). Rev Asoc Cienc Nat Litoral 16:85–93

    Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator V2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Res 14:209–214

    Article  CAS  Google Scholar 

  • Duponchelle F, Pouilly M, Pécheyran C, Hauser M, Renno JF, Panfili J, Darnaude AM, García-Vasquez A, Carvajal-Vallejos F, García-Dávila C, Doria C, Bérail S, Donard A, Sondag F, Santos RV, Nuñez J, Point D, Labonne M, Baras E (2016) Trans-Amazonian natal homing in giant catfish. J Appl Ecol (in press)

  • Earl D, VonHoldt B (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under linux and windows. Mol Ecol Res 10:564–567

    Article  Google Scholar 

  • Falush DD, Stephens MM, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faria J, Campos FP, Branco JO, Bruford MW (2010) Population structure in the South American tern Sterna hirundinacea in the South Atlantic : two populations with distinct breeding phenologies. J Avian Biol 41:378–387

    Article  Google Scholar 

  • Fillatre EK, Etherton P, Heath DD (2003) Bimodal run distribution in a northern population of sockeye salmon (Oncorhynchus nerka): life history and genetic analysis on a temporal scale. Mol Ecol 12:1793–1805

    Article  CAS  PubMed  Google Scholar 

  • Fishback AG, Danzmann RG, Ferguson MM (2000) Microsatellite allelic heterogeneity among hatchery rainbow trout maturing in different seasons. J Fish Biol 57:1367–1380

    Article  CAS  Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2001) A genetic evaluation of mating system and determinants of individual reproductive success in Atlantic salmon (Salmo salar L.). J Hered 92:137–145

    Article  CAS  PubMed  Google Scholar 

  • Garza JC, Gilbert-Horvath EA, Spence BC, Williams TH, Fish H, Gough SA, Anderson EC (2014) Population structure of steelhead in coastal california. Trans Am Fish Soc 143:134–152

    Article  Google Scholar 

  • Gerard PR, Fernandez-Manjarres JF, Frascaria-Lacoste N (2006) Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Mol Ecol 15:3655–3667

    Article  CAS  PubMed  Google Scholar 

  • Godoy MP (1975) Peixes do Brasil, subordem Characoidei: bacia do rio Mogí Guassú. vol 1. Editora Franciscana. Pirassununga, São Paulo 

  • Gomes PC, Lopera-Barrero NM, Vargas L, Junior DPS, Povh JA, Sirol RN, Ribeiro RP (2013) Genetic diversity of S. brasiliensis (Characiformes: Characidae) collected in the passage ladder of the Canoas I hydropower plant in the Paranapanema River, Brazil. Semin Cienc Agrar 34:1421–1432

    Google Scholar 

  • Goudet J (2001) FSTAT, a program to estimate and test gene diversities and fixation indices Version 2.9.3. http://www2.unil.ch/popgen/softwares/fstat.htm

  • Grimm AM, Ferraz SET, Gomes J (1998) Precipitation anomalies in southern Brazil associated with El Niño and La Niña events. J Clim 11:2863–2880

    Article  Google Scholar 

  • Grimm AM, Barros VR, Doyle ME (2000) Climate variability in Southern America associated with El Niño and La Niña events. J Clim 13:35–58

    Article  Google Scholar 

  • Hahn L, Agostinho A, English K, Carsfeld J, Camara LF, Cooke SJ (2011) Use of radiotelemetry to track threatened dorados S. brasiliensis in the upper Uruguay River, Brazil. Endanger Species Res 15:103–114

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (1999) Isolation by distance in a continuous population: reconciliation between spatial autocorrelation analysis and population genetics models. Heredity 83:145–154

    Article  PubMed  Google Scholar 

  • Hatanaka T, Galetti PM Jr (2003) RAPD markers indicate the occurrence of structured populations in a migratory freshwater fish species. Gen Mol Biol 26:19–25

    Article  CAS  Google Scholar 

  • Heim KC, Wipfli MS, Whitman MS, Seitz AC (2016) Body size and condition influence migration timing of juvenile Arctic grayling. Ecol Freshw Fish 25:156–166

    Article  Google Scholar 

  • Helfman G, Collette BB, Facey DE, Bowen BW (2009) The diversity of fishes: biology, evolution, and ecology. Wiley Blackwell, Chichester

    Google Scholar 

  • Hendry AP, Day T (2005) Population structure attributable to reproductive time: isolation by time and adaptation by time. Mol Ecol 14:901–916

    Article  CAS  PubMed  Google Scholar 

  • Hendry A, Berg O, Quinn T (1999) Condition dependence and adaptation-by-time: breeding date, life history, and energy allocation within a population of salmon. Oikos 85:499–514

    Article  Google Scholar 

  • Hermann TW, Stewart DJ, Limburg KE, Castello L (2016) Unravelling the life history of Amazonian fishes through otolith microchemistry. Roy Soc Open Sci 3:160206

    Article  Google Scholar 

  • Hoeinghaus DJ, Agostinho AA, Gomes LC, Winemiller KO (2009) Effects of river impoundment on ecosystem services of large tropical rivers: embodied energy and market value of artisanal fisheries. Conserv Biol 23:1222–1231

    Article  PubMed  Google Scholar 

  • Kovach RP, Gharrett AJ, Tallmon DA (2013) Temporal patterns of genetic variation in a salmon population undergoing rapid change in migration timing. Evolut Appl 6:795–807

    Article  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  CAS  PubMed  Google Scholar 

  • Machado C (2003) Aspectos reprodutivos de dourado S. brasiliensis (Cuvier, 1816)(Teleostei, Characidae) na região do Alto Rio Uruguai, Brasil. Msc. Thesis, Universidade Federal de Santa Catarina, Florianópolis, Brazil

  • Maes G, Pujolar JM, Hellemans B, Volckaert FAM (2006) Evidence for isolation by time in the European eel (Anguilla anguilla L.). Mol Ecol 15:2095–2107

    Article  CAS  PubMed  Google Scholar 

  • Mechoso CR, Iribarren GP (1992) Streamflow in southeastern South America and the southern oscillation. J Clim 5:1535–1540

    Article  Google Scholar 

  • Organizacion de los Estados Americanos (1975) Cuenca del Rio de la Plata: Estudio Para su Planificacion y Desarrollo. Washington, DC

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pereira LHG, Foresti F, Oliveira C (2009) Genetic structure of the migratory catfish P. corruscans (Siluriformes: Pimelodidae) suggests homing behaviour. Ecol Freshw Fish 18:215–225

    Article  Google Scholar 

  • Primmer CR, Veselov AJ, Zubchenko A, Poututin A, Bakhmet I, Koskinen MT (2006) Isolation by distance within a river system: genetic population structuring of Atlantic salmon, Salmo salar, in tributaries of the Varzuga River in northwest Russia. Mol Ecol 15:653–666

    Article  CAS  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Quinn TP, Busack CA (1985) Chemosensory recognition of siblings in juvenile Coho salmon (Oncorhynchus kisutch). Anim Behav 33:51–56

    Article  Google Scholar 

  • Quinn TP, Unwin MJ, Kinnison MT (2000) Evolution of temporal isolation in the wild: genetic divergence in timing of migration and breeding by introduced Chinook salmon populations. Evolution 54:1372–1385

    Article  CAS  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Ribolli J, Miño CI, Zaniboni-Filho E, Souza Guerreiro TC, Reynalte-Tataje DA, Freitas PD, Jr Galetti PM (2016) Preliminary insights into the genetic mating system of Neotropical S. brasiliensis: kinship assignment and parental reconstruction reveal polygynandry. Ichthyol Res 63:87–191

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richter-Boix A, Quintela M, Kierczak M, Franch M, Laurila A (2013) Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands. Mol Ecol 22:1322–1340

    Article  CAS  PubMed  Google Scholar 

  • Roberts JH, Angermeier PL, Hallerman EM (2013) Distance, dams and drift: what structures populations of an endangered, benthic stream fish? Freshw Biol 58:2050–2064

    Article  Google Scholar 

  • Rolshausen G, Hobson KA, Schaefer HM (2010) Spring arrival along a migratory divide of sympatric blackcaps (Sylvia atricapilla). Oecologia 162:175–183

    Article  PubMed  Google Scholar 

  • Rossini BC, Nunes AG, Freitas PD, Jr Galetti PM (2011) Permanent genetic resources added to molecular ecology resources database 1 December 2010–31 January 2011. Mol Ecol Res 11:586–589

    Article  Google Scholar 

  • Roumet M, Noilhan C, Latreille M, David J, Muller MH (2013) How to escape from crop-to-weed gene flow: phenological variation and isolation-by-time within weedy sunflower populations. New Phytol 197:642–654

    Article  CAS  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rueda EC, Carriquiriborde P, Monzón AM, Somoza GM, Ortí G (2013) Seasonal variation in genetic population structure of sábalo (P. lineatus) in the Lower Uruguay River. Genetica 141:401–407

    Article  PubMed  Google Scholar 

  • Sanches A, Galetti PM Jr (2007) Genetic evidence of population structuring in the neotropical freshwater fish Brycon hilarii (Valenciennes, 1850). Braz J Biol Rev Bras Biol 67:889–895

    Article  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  CAS  PubMed  Google Scholar 

  • Silva JV, Hilsdorf AWS (2011) Isolation and characterization of polymorphic microsatellite loci from Salminus hilarii (Characiformes: Characidae). Conserv Genet Res 3:437–439

    Article  Google Scholar 

  • Silva JV, Hallerman EM, Orfão LH, Hilsdorf AWS (2015) Genetic structuring of Salminus hilarii Valenciennes, 1850 (Teleostei: Characiformes) in the rio Paraná basin as revealed by microsatellite and mitochondrial DNA markers. Neot Ichthyol 13:547–556

    Article  Google Scholar 

  • So N, Maes GE, Volckaert FAM (2006) High genetic diversity in cryptic populations of the migratory sutchi catfish Pangasianodon hypophthalmus in the Mekong River. Heredity 96:166–174

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vazzoler AEAM (1996) Biologia da reprodução de peixes teleósteos: teoria e práctica. Universidade Estadual de Maringa, Maringá

    Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Res 8:753–756

    Article  Google Scholar 

  • Wasko AP, Galetti PM Jr (2002) RAPD analysis in the Neotropical fish Brycon lundii: genetic diversity and its implications for the conservation of the species. Hydrobiol 474:131–137

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Winemiller KO, McIntyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S, Baird IG, Darwall W, Lujan NK, Harrison I, Stiassny ML, Silvano RA, Fitzgerald DB, Pelicice FM, Agostinho AA, Gomes LC, Albert JS, Baran E, Petrere M Jr, Zarfl C, Mulligan M, Sullivan JP, Arantes CC, Sousa LM, Koning AA, Hoeinghaus DJ, Sabaj M, Lundberg JG, Armbruster J, Thieme ML, Petry P, Zuanon J, Torrente Vilara G, Snoeks J, Ou C, Rainboth W, Pavanelli CS, van Soesbergen A, Akama A, Sáenz L (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351:128–129

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto S, Sota T (2009) Incipient allochronic speciation by climatic disruption of the reproductive period. Proc R Soc 276:2711–2719

    Article  Google Scholar 

  • Yamamoto S, Morita K, Koizumi I, Maekawa K (2004) Genetic differentiation of white-spotted charr (Salvelinus leucomaenis) populations after habitat fragmentation: spatial–temporal changes in gene frequencies. Conserv Genet 5:529–538

    Article  CAS  Google Scholar 

  • Zaniboni-Filho E, Schulz UH (2003) Migratory fishes of the Uruguay River. In: Carolsfeld J, Harvey B, Baer A, Ross C (eds) Migratory fishes of South America: biology, fisheries and conservation status. International Development Research Centre and the World Bank. Victoria, Canada, pp 157–194

    Google Scholar 

  • Zayas MA, Cordiviola E (2007) The conservation state of Characidae fish (Pisces: Characiformes) in an area of the Plata basin, Argentina estado de conservación de peces Characidae (Pisces: Characiformes) en un área de la cuenca del plata, argentina. Gayana 71:178–186

    Google Scholar 

Download references

Acknowledgments

JR acknowledges financial support provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) and Programa de Doutorado Sanduíche no Exterior (PDSE) (process 1592/81-2). PMGJ thanks Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP, grant 2010/52315-7), Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Sistema Nacional de Pesquisa em Biodiversidade (SISBIOTA-Brazil, MCTI/CNPq 563299/2010-0). EZF thanks Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq, grant 302860/2014-2). We are grateful to Laboratório de Biologia e Cultivo de Peixes de Água Doce (LAPAD) of Universidade Federal de Santa Catarina (UFSC), and David A. Reynalte Tataje and Pedro Iaczinki for help with fish collections. Research was conducted under Animal Care Protocol PP00788.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josiane Ribolli.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribolli, J., Hoeinghaus, D.J., Johnson, J.A. et al. Isolation-by-time population structure in potamodromous Dourado Salminus brasiliensis in southern Brazil. Conserv Genet 18, 67–76 (2017). https://doi.org/10.1007/s10592-016-0882-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0882-x

Keywords

Navigation