Skip to main content

Advertisement

Log in

Can physiographic regions substitute for genetically-determined conservation units? A case study with the threatened plant, Silene spaldingii

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Protecting genetic diversity throughout the range of a species is important for conservation, as doing so provides for long-term evolutionary potential and persistence under a changing environment. Conservation of diversity at the intraspecific level requires identification of all genetically distinct population segments within species; i.e., conservation units (CUs). Silene spaldingii occurs in grasslands of the Columbia Plateau region of western North America and is listed as threatened under the Federal Endangered Species Act. The recovery plan identified five physiographic regions across the range of the species to use as surrogates for genetic CUs. We collected leaf samples from an average of 26 plants from each of 19 of the largest populations across all five physiographic regions and used variable microsatellite and chloroplast DNA markers to determine how genetic variation is distributed across the range of the species and how well physiographic regions reflect population structure within this species. Results of several multivariate analyses clustered our samples into four genetic groups which did not correspond well with the physiographic regions. We observed little genetic differentiation among populations in the main range of the species which encompasses nearly all of four contiguous physiographic regions. However, three other distinct genetic groups were identified: two in the disjunct northeast corner and one at the southeast edge of the main range. Modification of the CUs to reflect the genetic groups rather than the physiographic regions would result in CUs which better reflect historical patterns of population structure. Moreover, use of the genetic units to inform translocation and genetic rescue efforts could improve our ability to mimic natural patterns of gene flow. Our results suggest that physiographic regions may not always be an accurate reflection of population structure for threatened or endangered species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams B, DeHaan P, Tabor R, Thompson B, Hawkins D (2013) Characterization of tetranucleotide microsatellite loci for Olympic mudminnow (Novumbra hubbsi). Conserv Genet Res 5:573–575

    Article  Google Scholar 

  • Allendorf FW, Hohenlohe PA, Luikart G (2010) Genomics and the future of conservation genetics. Nat Rev Genet 11:697–709

    Article  CAS  PubMed  Google Scholar 

  • Allendorf FW, Luikart G, Aitken SN (2012) Conservation and the genetics of populations. John Wiley & Sons, Chichester

    Google Scholar 

  • Avise JC (2004) Molecular markers, natural history, and evolution. Sinauer Associates, Sunderland

    Google Scholar 

  • Bailey RG (1983) Delineation of ecosystem regions. Environ Manag 7:365–373

    Article  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165

    Article  PubMed  Google Scholar 

  • Bandelt H, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Bijlsma R, Bundgaard J, Boerema AC (2000) Does inbreeding affect the extinction risk of small populations?: predictions from Drosophila. J Evol Biol 13:502–514

    Article  Google Scholar 

  • Birky CW (2001) The inheritance of genes in mitochondria and chloroplasts: laws, mechanisms, and models. Annu Rev Genet 35:125–148

    Article  CAS  Google Scholar 

  • Bjork CR (2010) Distribution patterns of disjunct and endemic vascular plants in the interior wetbelt of northwest North America. Botany 88:409–428

    Article  Google Scholar 

  • Brunsfeld SJ, Nesom GL (1989) Erigeron salmonensis (Asteraceae), a rare new species from Idaho. Brittonia 41:424–428

    Article  Google Scholar 

  • Brunsfeld SJ, Miller TR, Carstens BC (2007) Insights into the biogeography of the Pacific Northwest of North America: evidence from the phylogeography of Salix melanopsis. Syst Bot 32:129–139

    Article  Google Scholar 

  • Bryce SA, Omernik JM, Larsen DP (1999) Ecoregions: a geographic framework to guide risk characterization and ecosystem management. Environ Pract 1:141–155

    Article  Google Scholar 

  • Cervantes-Alcayde MA, Olson ME, Olsen KM, Eguiarte LE (2015) Apparent similarity, underlying homoplasy: morphology and molecular phylogeny of the North American clade of Manihot. Am J Bot 102:520–532

    Article  PubMed  Google Scholar 

  • Coates DJ (2000) Defining conservation units in a rich and fragmented flora: implications for the management of genetic resources and evolutionary processes in south-west Australian plants. Aust J Bot 48:329–339

    Article  Google Scholar 

  • DeHaan PW, Scheerer PD, Rhew R, Ardren WR (2012) Analyses of genetic variation in populations of Oregon chub, a threatened floodplain minnow in a highly altered environment. Trans Am Fish Soc 141:533–549

    Article  Google Scholar 

  • Dizon AE, Lockyer C, Perrin WF, Demaster DP, Sisson J (1992) Rethinking the stock concept—a phylogeographic approach. Conserv Biol 6:24–36

    Article  Google Scholar 

  • Do C, Waples RS, Peel D, Macbeth GM, Tillett BJ, Ovenden JR (2014) NeEstimator v2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  CAS  PubMed  Google Scholar 

  • Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Article  Google Scholar 

  • Ennos RA (1994) Estimating the relative rates of pollen and seed migration among plant populations. Heredity 72:250–259

    Article  Google Scholar 

  • Excoffier L, Lischer HE (2010) Arlequin suite ver. 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falk DA, Holsinger KE (1991) Genetics and conservation of rare plants. Oxford University Press, New York

    Google Scholar 

  • Fields P, Keller SR, Ingvarsson PK, Pederson A, Taylor DR (2010) Isolation and characterization of polymorpic microsatellite loci in the white campion, Silene latifolia (Caryophyllaceae). Mol Ecol Resour 10:232–238

    Article  PubMed  Google Scholar 

  • Frankel OH, Soulé ME (1981) Conservation and evolution. Cambridge University Press, Cambridge

    Google Scholar 

  • Funk WC, McKay JK, Hohenlohe PA, Allendorf FW (2012) Harnessing genomics for delineating conservation units. Trends Ecol Evol 27:489–496

    Article  PubMed  PubMed Central  Google Scholar 

  • Goudet J (1995) FSTAT version 1.2: a computer program to calculate Fstatistics. J Hered 86:485–486

    Google Scholar 

  • Guerrant EO (1996) Designing populations: genetic, demographic and horticultural dimensions. In: Falk DA, Millar CI, Olwell M (eds) Restoring diversity. Island Press, Washington DC, pp 171–207

    Google Scholar 

  • Hansson B, Westerberg L (2002) On the correlation between heterozygosity and fitness in natural populations. Mol Ecol 11:2467–2474

    Article  PubMed  Google Scholar 

  • Havens K, Vitt P, Still S, Kramer AT, Fant JB, Schatz K (2015) Seed sourcing for restoration in an era of climate change. Nat Areas J 35:122–133

    Article  Google Scholar 

  • Hitchcock CL, Maguire B (1947) A revision of the North American species of Silene. Univ Wash Publ Biol 13:1–73

    Google Scholar 

  • Horning ME, McGovern TR, Darris DC, Mandel NL, Johnson R (2010) Genecology of Holodiscus discolor (Rosaceae) in the Pacific Northwest, U.S.A. Restor Ecol 18:235–243

    Article  Google Scholar 

  • Johnson R, Stritch L, Olwell P, Lambert S, Horning ME, Cronn R (2010) What are the best seed sources for ecosystem restoration on BLM and USFS lands? Nativ Plants 11:117–131

    Article  Google Scholar 

  • Jombart T (2008) Adegenet: a R package for the multivariate analysis of genetic markers. Bioinformatics 24:1403–1405

    Article  CAS  PubMed  Google Scholar 

  • Juillet N, Freymond H, Degen L, Goudet J (2003) Isolation and characterization of highly polymorphic microsatellite loci in the bladder campion, Silene vulgaris (Caryophyllaceae). Mol Ecol Notes 3:358–359

    Article  CAS  Google Scholar 

  • Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2014) CLUMPAK: a program for identifying clustering modes and packaging population structure inferences across K. http://clumpak.tau.ac.il/contact.html

  • Lance SL, Love CN, Nunziata SO, O’Bryhim JR, Scott DE, Flynn RW, Jones KL (2013) 32 species validation of a new Illumina paired-end approach for the development of microsatellites. PLoS ONE 8(11):e81853

    Article  PubMed  PubMed Central  Google Scholar 

  • Leigh J, Bryant D, Steel M (2015) PopART (Population Analysis with Reticulate Trees). http://popart.otago.ac.nz. Accessed July 2015

  • Leinonen T, O’Hara RB, Cano JM, Merilä J (2008) Comparative studies of quantitative trait and neutral marker divergence: a meta-analysis. J Evol Biol 21:1–17

    CAS  PubMed  Google Scholar 

  • Lesica P (1993) Loss of fitness resulting from pollinator exclusion in Silene spaldingii (Caryophyllaceae). Madrono 40:193–201

    Google Scholar 

  • Lesica P (1997) Demography of the endangered plant, Silene spaldingii (Caryophyllaceae) in northwest Montana. Madrono 44:347–358

    Google Scholar 

  • Lesica P (2014) Low recruitment not mortality limits growth of peripheral populations of Silene spaldingii. Botany 92:340–347

    Article  Google Scholar 

  • Lesica P, Allendorf FW (1999) Ecological genetics and the restoration of plant communities: mix or match? Restor Ecol 7:42–50

    Article  Google Scholar 

  • Lesica P, Heidel B (1996) Pollination biology of Silene spaldingii. Unpublished report. Montana Natural Heritage Program, Helena, Montana

  • Luck GW, Daily GC, Ehrlich PR (2003) Population diversity and ecosystem services. Trends Ecol Evol 18:331–336

    Article  Google Scholar 

  • Ma S, Zhang M (2012) Phylogeography and conservation genetics of the relic Gymnocarpos przewalskii (Caryophyllaceae) restricted to northwestern China. Conserv Genet 13:1531–1541

    Article  Google Scholar 

  • Mandel JR, Milton EF, Donovan LA, Knapp SJ, Burke JM (2013) Genetic diversity and population structure in the rare Algodones sunflower (Helianthus niveus ssp. tephrodes). Conserv Genet 14:31–40

    Article  Google Scholar 

  • Marsden BW, Engelhardt KAM, Neel MC (2013) Genetic rescue versus outbreeding depression in Vallesneria americana: implications for mixing seed sources for restoration. Biol Conserv 167:203–214

    Article  Google Scholar 

  • Maschinski J, Wright SJ, Koptur S, Pinto-Torres E (2013) When is local the best paradigm? Breeding history influences conservation reintroduction survival and population trajectories in times of extreme climatic events. Biol Conserv 159:277–284

    Article  Google Scholar 

  • McKay JK, Latta RG (2002) Adaptive population divergence: markers, QTL and traits. Trends Ecol Evol 17:285–291

    Article  Google Scholar 

  • McKay JK, Christian CE, Harrison S, Rice KJ (2005) ‘‘How local is local?’’—a review of practical and conceptual issues in the genetics of restoration. Restor Ecol 13:432–440

    Article  Google Scholar 

  • Meinig DW (1991) The Great Columbia plains: a historical geography, 1805–1910. University of Seattle Press, Seattle

    Google Scholar 

  • Millar CI, Libby WJ (1991) Strategies for conserving clinal, ecotypic and disjunct population diversity in widespread species. In: Falk DE, Holsinger KE (eds) Genetics and conservation of rare plants. Oxford University Press, New York, pp 149–170

    Google Scholar 

  • Miller SA, Bartow A, Gisler M, Ward K, Young AS, Kaye TN (2011) Can an ecoregion serve as a seed transfer zone? Evidence from a common garden study with five native species. Restor Ecol 19:268–276

    Article  Google Scholar 

  • Moritz C (1994) Defining ‘Evolutionary Significant Units’ for conservation. Tree 9:373–375

    CAS  PubMed  Google Scholar 

  • Negron-Oritz V (2014) Pattern of expenditures for plant conservation under the Endangered Species Act. Biol Conserv 171:36–43

    Article  Google Scholar 

  • Nei M, Suzuki Y, Nozawa M (2010) The neutral theory of molecular evolution in the genomic era. Annu Rev Genomics Hum Genet 11:265–289

    Article  CAS  PubMed  Google Scholar 

  • Noss RF, LaRoe ET, Scott JM (1995) Endangered ecosystems of the United States: a preliminary assessment of loss and degradation. Biological Report 28. U.S. Department of the Interior, National Biological Service, Washington, DC

  • O’Brien SJ, Roelke ME, Marker L, Newman A, Winkler CA, Meltzer D, Colly L, Evermann JF, Bush M, Wildt DE (1985) Genetic basis for species vulnerability in the cheetah. Science 227:1428–1434

    Article  PubMed  Google Scholar 

  • Oleas NH, von Wettberg EJB, Negrón-Ortiz V (2014) Population genetics of the federally threatened Miccosukee gooseberry (Ribes echinellum), an endemic North American species. Conserv Genet 15:749–755

    Google Scholar 

  • Ouborg NJ, Piquot Y, Van Groenendael JM (1999) Population genetics, molecular markers and the study of dispersal in plants. J Ecol 87:551–568

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pojar J, Klinka K, Meidinger DV (1987) Biogeoclimatic ecosystem classification in British Columbia. For Ecol Manag 22:119–154

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Rao S, Strange JP (2012) Bumble bee (Hymenoptera: Apidae) foraging distance and colony density associated with a late-season mass flowering crop. Environ Entomol 41:905–915

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Richards CM (2000) Inbreeding depression and genetic rescue in a plant metapopulation. Am Nat 155:383–394

    Article  PubMed  Google Scholar 

  • Rousset F (2008) GENEPOP ‘007: a complete re-implementation of the GENEPOP software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Schemske DW, Husband BC, Ruckelshaus BC, Goodwillie C, Parker IM, Bishop JG (1994) Evaluating the approaches to the conservation of rare and endangered plants. Ecology 75:584–606

    Article  Google Scholar 

  • Soulé ME (ed) (1987) Viable populations for conservation. Cambridge University Press, Cambridge

    Google Scholar 

  • Stingemore JA, Krauss SL (2013) Genetic delineation of local provenance in Persoonia longifolia: implications for seed sourcing for ecological restoration. Restor Ecol 21:49–57

    Article  Google Scholar 

  • Taberlet P, Gielly L, Pautou G, Bouvet J (1991) Universal primers for amplification of three non-coding regions of chloroplast DNA. Plant Mol Ecol 171:1105–1109

    Google Scholar 

  • Tallmon DA, Luikart G, Waples RS (2004) The alluring simplicity and complex reality of genetic rescue. Trends Ecol Evol 19:489–496

    Article  PubMed  Google Scholar 

  • Tubbesing C, Strohm C, DeBano SJ, Gonzalez N, Kimoto C, Taylor RV (2014) Insect visitors and pollination ecology of Spalding's catchfly (Silene spaldingii) in the Zumwalt Prairie of northeastern Oregon. Nat Areas J 34:200–211

    Article  Google Scholar 

  • U.S. Fish and Wildlife Service (USFWS) (2007) Recovery plan for Silene spaldingii (Spalding’s catchfly). U.S. Fish and Wildlife Service, Portland

  • Vogel KP, Schmer MR, Mitchell RB (2005) Plant adaptation regions: ecological and climatic classification of plant materials. Rangeland Ecol Manag 58:315–319

    Article  Google Scholar 

  • Waples RS (1995) Evolutionary significant units and the conservation of biological diversity under the Endangered Species Act. In: Nielsen JL, Powers DA (eds) Evolution and the aquatic ecosystem: defining unique units in population conservation. American Fisheries Society Symposium 17, Bethesda

  • Waples R (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Zurbuchen A, Landert L, Klaiber J, Müller A, Hein S, Dorn S (2010) Maximum foraging ranges in solitary bees: only few individuals have the capability to cover long foraging distances. Biol Conserv 143:669–676

    Article  Google Scholar 

Download references

Acknowledgments

We thank Karen Colson of the US Fish and Wildlife Service for her continued support of this project. Rochelle Beasley and Stacey Lance at Savannah River Ecology Lab (SREL) assisted in the development of the loci. We would like to thank Robert Taylor of the Nature Conservancy and Angela Sondenaa of the Nez Perce Tribe for assisting with genetic sample collection. Diane Stutzman (BLM) provided assistance in locating sample populations. We are grateful to Craig Johnson (BLM) for rescuing PL from the Snake River Canyon. Fred Allendorf, and Denise Hawkins provided helpful discussion. Nick Hardy prepared Fig. 1. Funding for this project was provided by the USFWS Idaho Fish and Wildlife Office. The findings and conclusions in this article are those of the authors and do not necessarily represent the views of the USFWS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Lesica.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lesica, P., Adams, B. & Smith, C.T. Can physiographic regions substitute for genetically-determined conservation units? A case study with the threatened plant, Silene spaldingii . Conserv Genet 17, 1041–1054 (2016). https://doi.org/10.1007/s10592-016-0842-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-016-0842-5

Keywords

Navigation