Skip to main content

Advertisement

Log in

Effective number of breeders in relation to census size as management tools for Atlantic salmon conservation in a context of stocked populations

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Monitoring short-term fluctuations in effective population sizes (N e) and effective number of breeders (N b), as well as their ratio to adult census population size (N e/N c and N b/N c), provide insight into population demography and inform conservation programs towards limiting long-term loss of evolutionary potential in wild populations. In this study, we monitored short-term variations of N b and N b/N c over three consecutive years for nine Atlantic salmon populations from Quebec, Canada. We documented how these population genetic parameters were influenced by anadromous population size as well as yearly and long-term stocking intensity. Towards this end, 15 microsatellites were used to genotype about 100 one-year-old parrs for each of three consecutive years for nine genetically distinct populations (total n = 2506) from Québec, Canada. Yearly stocking intensity had a negative effect on N b/N c, possibly as a consequence of a reduced reproductive contribution of stocked relative to wild fish. However, the impact of long-term stocking intensity on N b/N c was not significant, which may indicate relatively weak carry-over effects of stocking on future generations. Also, N b/N c was negatively correlated with N C, suggesting compensatory mechanisms, as previously reported in other salmonids. Overall, this study provides evidence of relatively weak and short-term effect of stocking on N b/N c ratio in Atlantic salmon populations and suggests potential biological mechanisms leading to the significant negative relationship between N b/N c and N c.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akaike H (1973) Information theory as an extension of the maximum likelihood principle. In: Petrov BN, Csaki F (eds) Second international symposium on information theory. Akademiai Kiado, Budapest, pp 267–281

    Google Scholar 

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucleic Acids Res 25:4692–4693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Araki H, Cooper B, Blouin MS (2007a) genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild. Science 318:100–103

    Article  PubMed  CAS  Google Scholar 

  • Araki H, Waples RS, Ardren WR et al (2007b) Effective population size of steelhead trout: influence of variance in reproductive success, hatchery programs, and genetic compensation between life-history forms. Mol Ecol 16:953–966

    Article  PubMed  Google Scholar 

  • Ardren WR, Kapuscinski AR (2002) Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout. Mol Ecol 12:35–49

    Article  Google Scholar 

  • Baalsrud HT, Saether B-E, Hagen IJ et al (2014) Effects of population characteristics and structure on estimates of effective population size in a house sparrow metapopulation. Mol Ecol 23:2653–2668

    Article  PubMed  Google Scholar 

  • Blanchet S, Páez DJ, Bernatchez L, Dodson JJ (2008) An integrated comparison of captive-bred and wild Atlantic salmon (Salmo salar): implications for supportive breeding programs. Biol Conserv 141:1989–1999

    Article  Google Scholar 

  • Caron F, Fontaine MP, Picard ES (1999) Seuil de conservation et cible de gestion pour les rivières à saumon (Salmo salar) du Québec. Faune et Parcs Québec, Direction de la faune et des habitats. 48 p. ftp://www.mrnf.gouv.qc.ca/Public/Bibliointer/Mono/2011/08/1082178.pdf

  • Cauchon V (2015) Bilan de l’exploitation du saumon au Québec en 2014, ministère des Forêts, de la Faune et des Parcs, Secteur de la faune, 298 p. http://www.mffp.gouv.qc.ca/publications/faune/bilan-saumon-2014.pdf

  • Charlesworth B (2009) Fundamental concepts in genetics: effective population size and patterns of molecular evolution and variation. Nat Rev Genet 10:195–205

    Article  PubMed  CAS  Google Scholar 

  • Christie MR, Marine ML, French RA, Blouin MS (2012a) Genetic adaptation to captivity can occur in a single generation. Proc Natl Acad Sci 109:238–242

    Article  PubMed  PubMed Central  Google Scholar 

  • Christie MR, Marine ML, French RA et al (2012b) Effective size of a wild salmonid population is greatly reduced by hatchery supplementation. Heredity 109:254–260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Consuegra S, Verspoor E, Knox D, Garcia de Leaniz C (2005) Asymmetric gene flow and the evolutionary maintenance of genetic diversity in small, peripheral Atlantic salmon populations. Conserv Genet 6:823–842

    Article  CAS  Google Scholar 

  • Crow JF, Kimura M (1970) An introduction to populations genetics theory. Harper and Row, New York 656 pp

    Google Scholar 

  • Dionne M, Cauchon V (2012) Écologie et évolution des populations témoins de saumon atlantique au Québec: rapport de recherche 2012. Ministère des Forêts, de la Faune et des Parcs, Direction générale de l’expertise sur la faune et ses habitats, Direction de la faune aquatique, Québec, 86 p. ftp://www.mern.gouv.qc.ca/Public/Bibliointer/Mono/2012/12/1120261.pdf

  • Dionne M, Caron F, Dodson JJ, Bernatchez L (2008) Landscape genetics and hierarchical genetic structure in Atlantic salmon: the interaction of gene flow and local adaptation. Mol Ecol 17:2382–2396

    Article  PubMed  CAS  Google Scholar 

  • Do C, Waples RS, Peel D et al (2013) NeEstimatorv2: re-implementation of software for the estimation of contemporary effective population size (Ne) from genetic data. Mol Ecol Resour 14:209–214

    Article  PubMed  Google Scholar 

  • Duchesne P, Bernatchez L (2002) Investigating the dynamics of inbreeding in multi-generation supportive breeding using a recurrence equations system generator. Conserv Genet 3:47–60

    Article  Google Scholar 

  • Ficetola GF, Padoa-Schioppa E, Wang J, Garner TWJ (2010) Polygyny, census and effective population size in the threatened frog, Rana latastei. Anim Conserv 13:82–89

    Article  Google Scholar 

  • Fleming IA (1996) Reproductive strategies of Atlantic salmon: ecology and evolution. Rev Fish Biol Fish 6:379–416

    Article  Google Scholar 

  • Fleming IA, Hindar K, Mjolnerod IB et al (2000) Lifetime success and interactions of farm salmon invading a native population. Proc R Soc B 267:1517–1523

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2010) Introduction to conservation genetics. Cambridge University Press, Cambridge 2002

  • Frankham R, Bradshaw CJA, Brook BW (2014) Genetics in conservation management: revised recommendations for the 50/500 rules, red list criteria and population viability analyses. Biol Conserv 170:56–63

    Article  Google Scholar 

  • Fraser DJ, Lippe C, Bernatchez L (2004) Consequences of unequal population size, asymmetric gene flow and sex-biased dispersal on population structure in brook charr (Salvelinus fontinalis). Mol Ecol 13:67–80

    Article  PubMed  CAS  Google Scholar 

  • Fraser DJ, Jones MW, McParland TL, Hutchings JA (2006) Loss of historical immigration and the unsuccessful rehabilitation of extirpated salmon populations. Conserv Genet 8:527–546

    Article  Google Scholar 

  • Garant D, Dodson JJ, Bernatchez L (2000) Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.). Mol Ecol 9:615–628

    Article  PubMed  CAS  Google Scholar 

  • Garza JC, Gilbert-Horvath EA, Spence BC et al (2014) Population structure of steelhead in coastal california. Trans Am Fish Soc 143:134–152

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (Version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Heath DD, Busch C, Kelly J, Atagi DY (2002) Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss). Mol Ecol 11:197–214

    Article  PubMed  CAS  Google Scholar 

  • Hedgecock D (1994) Does variance in reproductive success limit effective population size of marine organisms? In: Beaumont A (ed) Genetics and evolution of aquatic organisms. Chapman and Hall, London, pp 122–134

    Google Scholar 

  • Hedrick PN (2005) Large variance in reproductive success and the Ne/N ratio. Evolution 59:1596–1599

    Article  PubMed  Google Scholar 

  • Horreo JL, Machado-Schiaffino G, Griffiths AM et al (2011) Atlantic salmon at risk: apparent rapid declines in effective population size in southern European populations. Trans Am Fish Soc 140:605–610

    Article  Google Scholar 

  • ICES (2014) Report of the working group on north Atlantic salmon (WGNAS, 19–28 March 2014). 433 pp. http://www.ices.dk/sites/pub/Publication%20Reports/Expert%20Group%20Report/acom/2014/WGNAS/wgnas_2014.pdf

  • Johnstone DL, O’Connell MF, Palstra FP, Ruzzante DE (2013) Mature male parr contribution to the effective size of an anadromous Atlantic salmon (Salmo salar) population over 30 years. Mol Ecol 22:2394–2407

    Article  PubMed  Google Scholar 

  • Jones MW, Hutchings JA (2001) The influence of male parr body size and mate competition on fertilization success and effective population size in Atlantic salmon. Heredity 86:675–684

    Article  PubMed  CAS  Google Scholar 

  • Kalinowski ST, Waples RS (2002) Relationship of effective to census size in fluctuating populations. Conserv Biol 16:129–136

    Article  Google Scholar 

  • Lage C, Kornfield I (2006) reduced genetic diversity and effective population size in an endangered Atlantic salmon (Salmo salar) population from Maine, USA. Conserv Genet 7:91–104

    Article  Google Scholar 

  • Laikre L, Schwartz MK, Waples RS, Ryman N (2010) Compromising genetic diversity in the wild: unmonitored large-scale release of plants and animals. Trends Ecol Evol 25:520–529

    Article  PubMed  Google Scholar 

  • Luikart G, Ryman N, Tallmon DA et al (2010) Estimation of census and effective population sizes: the increasing usefulness of DNA-based approaches. Conserv Genet 11:355–373

    Article  CAS  Google Scholar 

  • Machado-Schiaffino G, Dopico E, Garcia-Vazquez E (2007) Genetic variation losses in Atlantic salmon stocks created for supportive breeding. Aquaculture 264:59–65

    Article  Google Scholar 

  • McGinnity P, Prodohl P, Ferguson K et al (2003) Fitness reduction and potential extinction of wild populations of Atlantic salmon, Salmo salar, as a result of interactions with escaped farm salmon. Proc R Soc B 270:2443–2450

    Article  PubMed  PubMed Central  Google Scholar 

  • Meirmans PG, van Tienderen PH (2004) genotype and genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Milot E, Perrier C, Papillon L, Dodson J, Bernatchez L (2013) Reduced fitness of Atlantic salmon released in the wild after one generation of captive breeding. Evol Appl 6:472–485

    Article  PubMed  PubMed Central  Google Scholar 

  • Moore J-S, Bourret V, Dionne M et al (2014) Conservation genomics of anadromous Atlantic salmon across its North American range: outlier loci identify the same patterns of population structure as neutral loci. Mol Ecol 23:5680–5697

    Article  PubMed  CAS  Google Scholar 

  • Moyer GR, Blouin MS, Banks MA (2007) The influence of family-correlated survival on Nb/N for progeny from integrated multi-and single-generation hatchery stocks of coho salmon (Oncorhynchus kisutch). Can J Fish Aquat Sci 64:1258–1265

    Article  Google Scholar 

  • Nunney L (1993) The influence of mating system and overlapping generations on effective population size. Evolution 47:1329

    Article  Google Scholar 

  • Ozerov MY, Veselov AE, Lumme J et al (2012) “Riverscape” genetics: river characteristics influence the genetic structure and diversity of anadromous and freshwater Atlantic salmon (Salmo salar) populations in northwest Russia. Can J Fish Aquat Sci 69:1947–1958

    Article  Google Scholar 

  • Palm S, Laikre L, Jorde PE, Ryman N (2003) Effective population size and temporal genetic change in stream resident brown trout (Salmo trutta, L.). Conserv Genet 4:249–264

    Article  CAS  Google Scholar 

  • Palstra FP, Fraser DJ (2012) Effective/census population size ratio estimation: a compendium and appraisal. Ecol Evol 2:2357–2365

    Article  PubMed  PubMed Central  Google Scholar 

  • Palstra FP, Ruzzante DE (2008) Genetic estimates of contemporary effective population size: what can they tell us about the importance of genetic stochasticity for wild population persistence? Mol Ecol 17:3428–3447

    Article  PubMed  Google Scholar 

  • Palstra FP, O’Connell MF, Ruzzante DE (2007) Population structure and gene flow reversals in Atlantic salmon (Salmo salar) over contemporary and long-term temporal scales: effects of population size and life history. Mol Ecol 16:4504–4522

    Article  PubMed  CAS  Google Scholar 

  • Palstra FP, O’Connell MF, Ruzzante DE (2009) Age structure, changing demography and effective population size in Atlantic Salmon (Salmo salar). Genetics 182:1233–1249

    Article  PubMed  PubMed Central  Google Scholar 

  • Peel D, Waples RS, Macbeth GM et al (2012) Accounting for missing data in the estimation of contemporary genetic effective population size (Ne). Mol Ecol Resour 13:243–253

    Article  PubMed  Google Scholar 

  • Perrier C, Guyomard R, Baglinière JL, Nikolic N, Evanno G (2013) Changes in the genetic structure of Atlantic salmon populations over four decades reveal substantial impacts of stocking and potential resiliency. Ecol Evol 3:2334–2349

    Article  PubMed  PubMed Central  Google Scholar 

  • Perrier C, Normandeau E, Dionne M, Richard A, Bernatchez L (2014) Alternative reproductive tactics increase effective population size and decrease inbreeding in wild Atlantic salmon. Evol Appl 7:1094–1106

    Article  PubMed  PubMed Central  Google Scholar 

  • Pray LA, Goodnight CJ, Stevens L et al (1996) The effect of population size on effective population size: an empirical study in the red flour beetle Tribolium castaneum. Genet Res 68:151

    Article  Google Scholar 

  • Reisenbichler R, McIntyre JD (1977) Genetic differences in growth and survival of juvenile hatchery and wild steelhead trout, Salmo gairdneri. J Fish Board Can 34:123–128

    Article  Google Scholar 

  • Richard A, Dionne M, Wang J, Bernatchez L (2012) Does catch and release affect the mating system and individual reproductive success of wild Atlantic salmon (Salmo salar, L.)? Mol Ecol 22:187–200

    Article  PubMed  Google Scholar 

  • Ryman N, Laikre L (1991) Effects of supportive breeding on the genetically effective population size. Conserv Biol 5:325–329

    Article  Google Scholar 

  • Ryman N, Jorde PE, Laikre L (1995) Supportive breeding and variance effective population size. Conserv Biol 9:1619–1628

    Article  Google Scholar 

  • Saura M, Caballero A, Caballero P, Moran P (2008) Impact of precocious male parr on the effective size of a wild population of Atlantic salmon. Freshw Biol 53:2375–2384

    Article  Google Scholar 

  • Shrimpton JM, Heath DD (2003) Census vs. effective population size in Chinook salmon: large- and small-scale environmental perturbation effects. Mol Ecol 12:2571–2583

    Article  PubMed  CAS  Google Scholar 

  • Taggart JB, Ferguson A (1986) Electrophoretic evaluation of a supplemental stocking programme for brown trout, Salmo trutta L. Aquac Res 17:1–9

    Article  Google Scholar 

  • Tallmon DA, Gregovich D, Waples RS et al (2010) When are genetic methods useful for estimating contemporary abundance and detecting population trends? Mol Ecol Resour 10:684–692

    Article  PubMed  Google Scholar 

  • Thériault V, Moyer GR, Jackson LS et al (2011) Reduced reproductive success of hatchery coho salmon in the wild: insights into most likely mechanisms. Mol Ecol 20:1860–1869

    Article  PubMed  Google Scholar 

  • Vaha JP, Erkinaro J, Niemela E, Primmer CR (2007) Life-history and habitat features influence the within-river genetic structure of Atlantic salmon. Mol Ecol 16:2638–2654

    Article  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  CAS  Google Scholar 

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, 4th edn. Springer, New York

    Book  Google Scholar 

  • Vucetich JA, Waite TA, Nunney L (1997) Fluctuating population size and the ratio of effective to census population size. Evolution 51:2017

    Article  Google Scholar 

  • Waples RS (2005) Genetic estimates of contemporary effective population size: to what time periods do the estimates apply? Mol Ecol 14:3335–3352

    Article  PubMed  CAS  Google Scholar 

  • Waples RS, Do C (2008) LDNe: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Waples RS, Do C (2010) Linkage disequilibrium estimates of contemporary Ne using highly variable genetic markers: a largely untapped resource for applied conservation and evolution. Evol Appl 3:244–262

    Article  PubMed  PubMed Central  Google Scholar 

  • Waples RS, Antao T, Luikart G (2014) Effects of overlapping generations on linkage disequilibrium estimates of effective population size. Genetics 197:769–780

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteley AR, Coombs JA, Hudy M et al (2012) Sampling strategies for estimating brook trout effective population size. Conserv Genet 13:625–637

    Article  Google Scholar 

  • Wright S (1931) Evolution in Mendelian populations. Genetics 16:97

    PubMed  PubMed Central  CAS  Google Scholar 

  • Wright S (1969) Evolution and the genetics of populations. The Theory of gene frequencies, vol II. University of Chicago Press, Chicago

    Google Scholar 

Download references

Acknowledgments

We thank all the biologists and technicians of the Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP) for their implication in the project and their field assistance. We are grateful to E. Normandeau for his help while analysing the data, to A.-L. Ferchaud for N b discussions, and to B. Sutherland for editing the language of the manuscript. We also thank Associate Editor C. Garza and two anonymous referees for their very constructive input. This project was funded by the Ministère des Forêts, de la Faune et des Parcs du Québec (MFFP). C. Perrier was funded by a postdoctorate fellowship from Ressources Aquatiques Québec and from the Chaire de Recherche du Canada en Génomique et Conservation des Ressources Aquatiques held by LB.

Authors’ contributions

Conceived the study: M.D. and L.B. supervised sampling: M.D. Performed lab analyses: G.C. Performed statistical analyses: C.P. Wrote the paper: C.P. Contributed to the paper improvement: J.A., M.D., L.B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Perrier.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 322 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perrier, C., April, J., Cote, G. et al. Effective number of breeders in relation to census size as management tools for Atlantic salmon conservation in a context of stocked populations. Conserv Genet 17, 31–44 (2016). https://doi.org/10.1007/s10592-015-0758-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0758-5

Keywords

Navigation