Skip to main content

Advertisement

Log in

Population genetic structure of Iris ensata on sky-islands and its implications for assisted migration

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Due to global warming since the Last Glacial Maximum, many plant populations have retreated to mountain tops, i.e., sky-islands, which are isolated by low-elevation barriers and inhospitable habitats. Under projected environmental changes, these populations may decline and face local extinction. Iris ensata Thunb. populations at the species’ most southern distribution range are in this position. We used eight polymorphic nuclear microsatellite markers and three fragments of chloroplast genome to analyze population structure of six extant sky-island populations of I. ensata. A total of 83 alleles were found across 192 individuals from six populations. High levels of intra-population genetic diversity (H E  = 0.578, H O  = 0.608) of I. ensata were detected. Moderate but significant levels of genetic differentiation were also found among the populations (F ST  = 0.133, P < 0.001). Mantel test showed no isolation-by-distance pattern (r = 0.339, P = 0.161). Assignment analysis classified all individuals into five groups, and four populations were dominated by only one group. Five chloroplast DNA (cpDNA) haplotypes were found, and one was shared by all populations. Two populations contained a private haplotype. Long-term fragmentation, but relatively large population sizes and restricted gene flow among populations, contributed to the above patterns. Under projected habitat changes, the studied populations are at risk of local extinction. We identified three populations that had a high priority of ex situ conservation to be the source populations for the future assisted migration. Number of individuals, how to select individuals, and a potential recipient site were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aitken SN, Whitlock MC (2013) Assisted gene flow to facilitate local adaptation to climate change. Annu Rev Ecol Evol Syst 44:367–388. doi:10.1146/annurev-ecolsys-110512-135747

    Article  Google Scholar 

  • Antao T, Lopes A, Lopes R, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinform 9:323. doi:10.1186/1471-2105-9-323

    Article  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) GENCLONE: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17. doi:10.1111/j.1471-8286.2006.01522.x

    Article  CAS  Google Scholar 

  • Arnold ML (2000) Anderson’s paradigm: louisiana Irises and the study of evolutionary phenomena. Mol Ecol 9:1687–1698. doi:10.1046/j.1365-294x.2000.01090.x

    Article  CAS  PubMed  Google Scholar 

  • Bouzat J (2010) Conservation genetics of population bottlenecks: the role of chance, selection, and history. Conserv Genet 11:463–478. doi:10.1007/s10592-010-0049-0

    Article  Google Scholar 

  • Brzosko E, Wróblewska A, Ratkiewicz M (2002) Spatial genetic structure and clonal diversity of island populations of lady’s slipper (Cypripedium calceolus) from the Biebrza National Park (northeast Poland). Mol Ecol 11:2499–2509. doi:10.1046/j.1365-294X.2002.01630.x

    Article  CAS  PubMed  Google Scholar 

  • Chen X-Y (2000) Effects of habitat fragmentation on genetic structure of plant populations and implications for the biodiversity conservation. Acta Ecol Sin 20:884–892

    Google Scholar 

  • Ciofi C, Beaumontf MA, Swingland IR, Bruford MW (1999) Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis. Proc R Soc Lond Ser B 266:2269–2274. doi:10.1098/rspb.1999.0918

    Article  Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. doi:10.1046/j.1365-294x.2000.01020.x

    Article  CAS  PubMed  Google Scholar 

  • Colwell RK, Brehm G, Cardelus CL, Gilman AC, Longino JT (2008) Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. Science 322:258–261. doi:10.1126/science.1162547

    Article  CAS  PubMed  Google Scholar 

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed Central  PubMed  Google Scholar 

  • DeChaine EG, Martin AP (2005) Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains. Am J Bot 92:477–486. doi:10.3732/ajb.92.3.477

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Rambaut A (2007) BEAST, Bayesian evolutionary analysis by sampling trees. BMC Evolut Biol 7:214. doi:10.1186/1471-2148-7-214

  • El Mousadik A, Petit RJ (1996) High level of genetic differentiation for allelic richness among populations of the argan tree [Argania spinosa (L.) Skeels] endemic to Morocco. Theor Appl Genet 92:832–839. doi:10.1007/BF00221895

    Article  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Foden W, Midgley GF, Hughes G, Bond WJ, Thuiller W, Hoffman MT, Kaleme P, Underhill LG, Rebelo A, Hannah L (2007) A changing climate is eroding the geographical range of the Namib Desert tree Aloe through population declines and dispersal lags. Divers Distrib 13:645–653. doi:10.1111/j.1472-4642.2007.00391.x

    Article  Google Scholar 

  • Goudet J (1995) FSTAT (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Google Scholar 

  • Hamrick JL, Godt MJW (1996) Effects of life history traits on genetic diversity in plant species. Phil Trans R Soc Lond B 351:1291–1298. doi:10.1098/rstb.1996.0112

    Article  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGEDI: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620. doi:10.1046/j.1471-8286.2002.00305.x

    Article  Google Scholar 

  • Hewitt N, Klenk N, Smith AL, Bazely DR, Yan N, Wood S, MacLellan JI, Lipsig-Mumme C, Henriques I (2011) Taking stock of the assisted migration debate. Biol Conserv 144:2560–2572. doi:10.1016/j.biocon.2011.04.031

    Article  Google Scholar 

  • Inoue MN, Yokoyama J, Washitani I (2008) Displacement of Japanese native bumblebees by the recently introduced Bombus terrestris (L.) (Hymenoptera: Apidae). J Insect Conserv 12:135–146. doi:10.1007/s10841-007-9071-z

    Article  Google Scholar 

  • IUCN/SSC (2013) IUCN guidelines for reintroductions and other conservation translocations. IUCN Species Survival Commission, Gland, Switzerland and Cambridge, UK

  • Jump AS, Peñuelas J (2005) Running to stand still: adaptation and the response of plants to rapid climate change. Ecol Lett 8:1010–1020. doi:10.1111/j.1461-0248.2005.00796.x

    Article  Google Scholar 

  • Krauss SL, Dixon B, Dixon KW (2002) Rapid genetic decline in a translocated population of the endangered plant Grevillea scapigera. Conserv Biol 16:986–994. doi:10.1046/j.1523-1739.2002.01105.x

    Article  Google Scholar 

  • Kreyer D, Oed A, Walther-Hellwig K, Frankl R (2004) Are forests potential landscape barriers for foraging bumblebees? Landscape scale experiments with Bombus terrestris agg. and Bombus pascuorum (Hymenoptera, Apidae). Biol Conserv 116:111–118. doi:10.1016/S0006-3207(03)00182-4

    Article  Google Scholar 

  • Lenoir J, Gegout JC, Marquet PA, de Ruffray P, Brisse H (2008) A significant upward shift in plant species optimum elevation during the 20th century. Science 320:1768–1771. doi:10.1126/science.1156831

    Article  CAS  PubMed  Google Scholar 

  • Li YY, Chen XY, Zhang X, Wu TY, Lu HP, Cai YW (2005) Genetic differences between wild and artificial populations of Metasequoia glyptostroboides Hu et Cheng (Taxodiaceae): implications for species recovery. Conserv Biol 19:224–231. doi:10.1111/j.1523-1739.2005.00025.x

    Article  Google Scholar 

  • Liu M, Zhang J, Chen Y, Compton SG, Chen X-Y (2013) Contrasting genetic responses to population fragmentation in a coevolving fig and fig wasp across a mainland–island archipelago. Mol Ecol 22:4384–4396. doi:10.1111/mec.12406

    Article  PubMed  Google Scholar 

  • Lu H-P, Cai Y-W, Chen X-Y, Zhang X, Gu Y-J, Zhang G-F (2006) High RAPD but no cpDNA sequence variation in the endemic and endangered plant, Heptacodium miconioides Rehd. (Caprifoliaceae). Genetica 128:409–417. doi:10.1007/s10709-006-7542-x

    Article  CAS  PubMed  Google Scholar 

  • Lu HP, Wagner HH, Chen XY (2007) A contribution diversity approach to evaluate species diversity. Basic Appl Ecol 8:1–12. doi:10.1016/j.baae.2006.06.004

    Article  CAS  Google Scholar 

  • Marlowe K, Hufford L (2008) Evolution of Synthyris sect. Dissecta (Plantaginaceae) on sky islands in the Northern Rocky Mountains. Am J Bot 95:381–392. doi:10.3732/ajb.95.3.381

    Article  CAS  PubMed  Google Scholar 

  • McCarty JP (2001) Ecological consequences of recent climate change. Conserv Biol 15:320–331. doi:10.1046/j.1523-1739.2001.015002320.x

    Article  Google Scholar 

  • McEwen C (1990) The Japanese Iris. Timber Press Inc, Portland

    Google Scholar 

  • Meerow AW, Gideon M, Kuhn DN, Motamayor JC, Nakamura K (2007) Genetic structure and gene flow among South Florida populations of Iris hexagona Walt. (Iridaceae) assessed with 19 microsatellite DNA loci. Intl J Plant Sci 168:1291–1309. doi:10.1086/521692

    Article  CAS  Google Scholar 

  • Miller MP (1997) Tools for population genetic analyses (TFPGA) v1.3: A windows program for the analysis of allozyme and molecular genetic data. Department of Biological Sciences, Northern Arizona University, Flagstaff

  • Miloslavich P, Díaz JM, Klein E, Alvarado JJ, Díaz C, Gobin J, Escobar-Briones E, Cruz-Motta JJ, Weil E, Cortés J, Bastidas AC, Robertson R, Zapata F, Martín A, Castillo J, Kazandjian A, Ortiz M (2010) Marine biodiversity in the Caribbean: regional estimates and distribution patterns. PLoS ONE 5:e11916. doi:10.1371/journal.pone.0011916

    Article  PubMed Central  PubMed  Google Scholar 

  • Moore SE, Huntington HP (2008) Arctic marine mammals and climate change: impacts and resilience. Ecol Appl 18:S157–S165. doi:10.1890/06-0571.1

    Article  PubMed  Google Scholar 

  • Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264. doi:10.1126/science.1163428

    Article  CAS  PubMed  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Oksanen J, Kindt R, Legendre P, O’Hara B, Simpson GL, Solymos P, Stevens MHH, Wagner H (2008) vegan: community ecology package. Package version 1.15-1. http://vegan.r-forge.r-project.org/

  • Osborne JL, Clark SJ, Morris RJ, Williams IH, Riley JR, Smith AD, Reynolds DR, Edwards AS (1999) A landscape-scale study of bumble bee foraging range and constancy, using harmonic radar. J Appl Ecol 36:519–533. doi:10.1046/j.1365-2664.1999.00428.x

    Article  Google Scholar 

  • Parks JC, Werth CR (1993) A study of spatial features of clones in a population of bracken fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544

    Article  Google Scholar 

  • Parmesan C, Ryrholm N, Stefanescu C, Hill JK, Thomas CD, Descimon H, Huntley B, Kaila L, Kullberg J, Tammaru T, Tennent WJ, Thomas JA, Warren M (1999) Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399:579–583. doi:10.1038/21181

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

    Article  Google Scholar 

  • Pérez-Alquicira J, Molina-Freaner FE, Piñero D, Weller SG, Martínez-Meyer E, Rozas J, Domínguez CA (2010) The role of historical factors and natural selection in the evolution of breeding systems of Oxalis alpina in the Sonoran desert ‘Sky Islands’. J Evol Biol 23:2163–2175. doi:10.1111/j.1420-9101.2010.02075.x

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ricciardi A, Simberloff D (2009) Assisted colonization is not a viable conservation strategy. Trends Ecol Evol 24:248–253. doi:10.1016/j.tree.2008.12.006

    Article  PubMed  Google Scholar 

  • Richardson DM, Hellmann JJ, McLachlan JS, Sax DF, Schwartz MW, Gonzalez P, Brennan EJ, Camacho A, Root TL, Sala OE, Schneider SH, Ashe DM, Clark JR, Early R, Etterson JR, Fielder ED, Gill JL, Minteer BA, Polasky S, Safford HD, Thompson AR, Vellend M (2009) Multidimensional evaluation of managed relocation. Proc Natl Acad Sci 106:9721–9724. doi:10.1073/pnas.0902327106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rousset F (1997) Genetic differentiation and estimation of gene flow from F-statistics under isolation by distance. Genetics 145:1219–1228

    CAS  PubMed Central  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Shaw J, Lickey EB, Schilling EE, Small RL (2007) Comparison of whole chloroplast genome sequences to choose noncoding regions for phylogenetic studies in angiosperms: the tortoise and the hare III. Am J Bot 94:275–288. doi:10.3732/ajb.94.3.275

    Article  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, positions-specific gap penalties and weight matrix choice. Nucl Acids Res 22:4673–4680

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vitt P, Havens K, Kramer AT, Sollenberger D, Yates E (2010) Assisted migration of plants: changes in latitudes, changes in attitudes. Biol Conserv 143:18–27. doi:10.1016/j.biocon.2009.08.015

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Wilson CA (2004) Phylogeny of Iris based on chloroplast matK gene and trnK intron sequence data. Mol Phylogenet Evol 33:402–412. doi:10.1016/j.ympev.2004.06.013

    Article  CAS  PubMed  Google Scholar 

  • Xiao Y-E, Tian Q, Zhou X-Y, Chen X-Y, Hu Y-H (2010) Reproductive ecology of Iris ensata (Iridaceae). Acta Bot Yunnanica 32:93–102

    Article  CAS  Google Scholar 

  • Xiao Y-E, Hu Y-H, Liu M, Chen X-Y (2012) Isolation and characterization of polymorphic microsatellites in Iris ensata (Iridaceae). Am J Bot 99:e498–e500. doi:10.3732/ajb.1200266

    Article  PubMed  Google Scholar 

  • Zhao YT, Noltie H, Mathew B (2000) Iridaceae. Flora China 24:297–313

    Google Scholar 

Download references

Acknowledgments

We thank Xi Yang Ye for assistance in field sample collections, Kang Ni in data analyses, and Rong Wang for comments and suggestions on the manuscript. This work was financially supported by the Research Funds of Shanghai City Appearance & Environmental Sanitation Administration Bureau under Grant No.G092404.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Yong Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, YE., Jiang, K., Tong, X. et al. Population genetic structure of Iris ensata on sky-islands and its implications for assisted migration. Conserv Genet 16, 1055–1067 (2015). https://doi.org/10.1007/s10592-015-0722-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0722-4

Keywords

Navigation