Skip to main content

Advertisement

Log in

Differences in population connectivity of a benthic marine invertebrate Evechinus chloroticus (Echinodermata: Echinoidea) across large and small spatial scales

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Marine organisms with a planktonic larval stage have the potential to be transported substantial distances, with the distance travelled depending on factors such as pelagic larval duration (PLD) and physical factors such as ocean currents and geographical barriers. The endemic New Zealand sea urchin, Evechinus chloroticus, is found throughout the North and South Islands, and with a PLD of approximately 30 days, is expected to show strong connectivity among all populations. Population connectivity and genetic differentiation were examined over both a geographically broad scale, throughout New Zealand, and on a fine scale (within the Hauraki Gulf on the North Island). Significant genetic differentiation was revealed through analysis of mitochondrial COI sequences (FST = 0.096 p < 0.01) and six microsatellite loci (FST = 0.0120 p < 0.008). This was consistent with a division between northern and southern regions located to the south of Cook Strait, at a phylogeographic barrier previously reported in other New Zealand benthic marine invertebrates. Fine-scale population differentiation was evident between the inner and outer Hauraki Gulf populations, and between the most northern populations and the remainder of the North Island. Together, this study suggests that strong coastal currents, upwelling in the Cook Strait region, and geographic distance (approximately 2000 km north to south) may all be acting to restrict gene flow and contribute to genetic divergence among populations of E. chloroticus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Addison JA, Hart MW (2004) Analysis of population genetic structure of the green sea urchin (Strongylocentrotus droebachiensis) using microsatellites. Mar Biol 144:243–251. doi:10.1007/s00227-003-1193-6

    Article  Google Scholar 

  • Andrew NL (1988) Ecological aspects of the common sea-urchin, Evechinus chloroticus, in northern New Zealand—a review. N Z J Mar Freshwat Res 22:415–426

    Article  Google Scholar 

  • Apte S, Gardner JPA (2002) Population genetic subdivision in the New Zealand greenshell mussel (Perna canaliculus) inferred from single-strand conformation polymorphism analysis of mitochondrial DNA. Mol Ecol 11:1617–1628

    Article  CAS  PubMed  Google Scholar 

  • Avise JC (1994) Molecular markers, natural history, and evolution. Chapman and Hall, New York

    Book  Google Scholar 

  • Ayers KL, Waters JM (2005) Marine biogeographic disjunction in central New Zealand. Mar Biol 147:1045–1052. doi:10.1007/s00227-005-1632-7

    Article  Google Scholar 

  • Balloux F, Lugon-Moulin N (2002) The estimation of population differentiation with microsatellite markers. Mol Ecol 11:155–165. doi:10.1046/j.0962-1083.2001.01436.x

    Article  PubMed  Google Scholar 

  • Banks SC, Piggott MP, Williamson JE, Bove U, Holbrook NJ, Beheregaray LB (2007) Oceanic variability and coastal topography shape genetic structure in a long-dispersing sea urchin. Ecology 88:3055–3064

    Article  PubMed  Google Scholar 

  • Barker M (2007) Chapter 16 ecology of Evechinus chloroticus. Dev Aquacult Fish Sci 37:319–338

    Article  Google Scholar 

  • Benham CE, Supernault KJ, Burton RS (2012) Genetic assessment of the population connectivity of the red urchin (Strongylocentrotus franciscanus). J Exp Mar Biol Ecol 432:47–54. doi:10.1016/j.jembe.2012.07.011

    Article  Google Scholar 

  • Benjamini Y, Yekutieli D (2001) The control of the false discovery rate in multiple testing under dependency. Ann Stat 29:1165–1188

    Article  Google Scholar 

  • Birt TP (2000) Polymerase chain reaction. In: Baker AJ (ed) Molecular methods in ecology. Blackwell Science, Oxford, pp 50–64

    Google Scholar 

  • Botsford LW, Hastings A, Gaines SD (2001) Dependence of sustainability on the configuration of marine reserves and larval dispersal distance. Ecol Lett 4:144–150

    Article  Google Scholar 

  • Botsford LW, White JW, Coffroth MA, Paris CB, Planes S, Shearer TL, Thorrold SR, Jones GP (2009) Connectivity and resilience of coral reef metapopulations in marine protected areas: matching empirical efforts to predictive needs. Coral Reefs 28:327–337. doi:10.1007/s00338-009-0466-z

    Article  PubMed Central  PubMed  Google Scholar 

  • Broquet T, Viard F, Yearsley JM (2013) Genetic drift and collective dispersal can result in chaotic genetic patchiness. Evolution 67:1660–1675. doi:10.1111/j.1558-5646.2012.01826.x

    Article  PubMed  Google Scholar 

  • Chiswell SM (2003) Circulation within the Wairarapa Eddy, New Zealand. N Z J Mar Freshwat Res 37:691–704

    Article  Google Scholar 

  • Clarke K, Gorely R (2006) Primer V6: User Manual/Tutorial.PRIMER-E, Plymouth

  • Collins CJ, Fraser CI, Ashcroft A, Waters JM (2010) Asymmetric dispersal of southern bull-kelp (Durvillaea antarctica) adults in coastal New Zealand: testing an oceanographic hypothesis. Mol Ecol 19:4572–4580. doi:10.1111/j.1365-294X.2010.04842.x

    Article  PubMed  Google Scholar 

  • Cowen RK, Lwiza KMM, Sponaugle S, Paris CB, Olson DB (2000) Connectivity of marine populations: open or closed? Science 287:857–859. doi:10.1126/science.287.5454.857

    Article  CAS  PubMed  Google Scholar 

  • Dix TG (1970) Biology of Evechinus chloroticus (Echinoidea:Echinometridae) from different localities. N Z J Mar Freshwat Res 4:385–405

    Article  Google Scholar 

  • Doherty PJ, Planes S, Mather P (1995) Gene flow and larval duration in 7 species of fish from the Great Barrier Reef. Ecology 76:2373–2391

    Article  Google Scholar 

  • Drummond AJ, Ashton B, Cheung M, Heled J, Kearse M, Moir R, Stones-Havas S, Sturrock S, Thierer T, Wilson A (2010) Geneious v5.0. Available from www.geneious.com

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620. doi:10.1111/j.1365-294X.2005.02553.x

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Res 10:564–567. doi:10.1111/j.1755-0998.2010.02847.x

    Article  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes—application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    CAS  PubMed Central  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fisher RA (1935) The logic of inductive inference. J Royal Stat Soc 98:39–82

    Article  Google Scholar 

  • Fraser CI, Winter DJ, Spencer HG, Waters JM (2010) Multigene phylogeny of the southern bull-kelp genus Durvillaea (Phaeophyceae: Fucales). Mol Phylogen Evol 57:1301–1311. doi:10.1016/j.ympev.2010.10.011

    Article  CAS  Google Scholar 

  • Goldstien SJ, Schiel DR, Gemmell NJ (2006) Comparative phylogeography of coastal limpets across a marine disjunction in New Zealand. Mol Ecol 15:3259–3268. doi:10.1111/j.1365-294X.2006.02977.x

    Article  CAS  PubMed  Google Scholar 

  • Hedgecock D, Pudovkin AI (2011) Sweepstakes reproductive success in highly fecund marine fish and shellfish: a review and commentary. Bull Mar Sci 87:971–1002. doi:10.5343/bms.2010.1051

    Article  Google Scholar 

  • Hedgecock D, Barber PH, Edmands S (2007) Genetic approaches to measuring connectivity. Oceanography 20:70–79

    Article  Google Scholar 

  • Hedrick PW (1999) Perspective: Highly variable loci and their interpretation in evolution and conservation. Evolution 53:313–318. doi:10.2307/2640768

    Article  Google Scholar 

  • Hellberg ME (1996) Dependence of gene flow on geographic distance in two solitary corals with different larval dispersal capabilities. Evolution 50:1167–1175. doi:10.2307/2410657

    Article  Google Scholar 

  • Hickey AJR, Lavery SD, Hannan DA, Baker CS, Clements KD (2009) New Zealand triplefin fishes (family Tripterygiidae): contrasting population structure and mtDNA diversity within a marine species flock. Mol Ecol 18:680–696. doi:10.1111/j.1365-294X.2008.04052.x

    Article  CAS  PubMed  Google Scholar 

  • Hinnendael F (2008) Hemigrapsus crenulatus and H. sexdentatus. MSc. Leigh Marine Laboratory, Auckland

    Google Scholar 

  • Hoelzel A, Green A (1998) PCR protocols and population analysis by direct DNA sequencing and PCR-based DNA fingerprinting. In: Hoelzel AR (ed) Molecular genetic analysis of populations: a practical approach. Oxford University Press, Oxford, pp 201–233

    Google Scholar 

  • Holleley CE, Geerts PG (2009) Multiplex manager 1.0: a cross-platform computer program that plans and optimizes multiplex PCR. Biotechniques 46:511. doi:10.2144/000113156

    Article  CAS  PubMed  Google Scholar 

  • Jensen JL, Bohonak AJ, Kelley ST (2005) Isolation by distance, web service. BMC Genet. doi:10.1186/1471-2156-6-13

    PubMed Central  PubMed  Google Scholar 

  • Johnson MS, Black R (1982) Chaotic genetic patchiness in an inter-tidal limpet, Siphonaria sp. Mar Biol 70:157–164

    Article  Google Scholar 

  • Johnson MS, Black R (1984) Pattern beneath the chaos—the effect of recruitment on genetic patchiness in an intertidal limpet. Evolution 38:1371–1383

    Article  Google Scholar 

  • Jones GP, Srinivasan M, Almany GR (2007) Population connectivity and conservation of marine biodiversity. Oceanography 20:100–111

    Article  Google Scholar 

  • Jones TC, Gemmill CEC, Pilditch CA (2008) Genetic variability of New Zealand seagrass (Zostera muelleri) assessed at multiple spatial scales. Aquat Bot 88:39–46. doi:10.1016/j.aquabot.2007.08.017

    Article  Google Scholar 

  • Kimura M (1980) A simple method for estimating evolutionary rates of base substitution through comparative studies of nucleotide sequences. Mol Evol 16:111–120

    Article  CAS  Google Scholar 

  • Kinlan BP, Gaines SD, Lester SE (2005) Propagule dispersal and the scales of marine community process. Divers Distrib 11:139–148. doi:10.1111/j.1366-9516.2005.00158.x

    Article  Google Scholar 

  • Lamare MD, Stewart BG (1998) Mass spawning by the sea urchin Evechinus chloroticus (Echinodermata: Echinoidea) in a New Zealand fiord. Mar Biol 132:135–140

    Article  Google Scholar 

  • Leis JM, Carson-Ewart BM (2001) Behaviour of pelagic larvae of four coral-reef fish species in the ocean and an atoll lagoon. Coral Reefs 19:247–257

    Google Scholar 

  • Levin LA (2006) Recent progress in understanding larval dispersal: new directions and digressions. Integr Comp Biol 46:282–297. doi:10.1093/icb/024

    Article  CAS  PubMed  Google Scholar 

  • Lewis PO, Zaykin D (2002) Genetic data analysis: computer program for the analysis of allelic data. Version 1.1. Free program distributed by the authors over the internet from http://hydrodictyon.eeb.uconn.edu/people/plewis/software.php

  • Meirmans PG (2006) Using the AMOVA framework to estimate a standardized genetic differentiation measure. Evol 60:2399–2402

    Article  Google Scholar 

  • Meirmans PG, Hedrick PW (2011) Assessing population structure: F(ST) and related measures. Mol Ecol Resour 11:5–18

    Article  PubMed  Google Scholar 

  • Mercier A, Sewell MA, Hamel JF (2013) Pelagic propagule duration and developmental mode: reassessment of a fading link. Global Ecol Biogeogr 22:517–530. doi:10.1111/geb.12018

  • Mladenov PV, Allibone RM, Wallis GP (1997) Genetic differentiation in the New Zealand sea urchin Evechinus chloroticus (Echinodermata: Echinoidea). N Z J Mar Freshwat Res 31:261–269

    Article  Google Scholar 

  • Muths D, Jollivet D, Gentil F, Davoult D (2009) Large-scale genetic patchiness among NE Atlantic populations of the brittle star Ophiothrix fragilis. Aquat Biol 5:117–132. doi:10.3354/ab00138

    Article  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olivares-Banuelos NC, Enriquez-Paredes LM, Ladah LB, De La Rosa-Velez J (2008) Population structure of purple sea urchin Strongylocentrotus purpuratus along the Baja California peninsula. Fish Sci 74:804–812. doi:10.1111/j.1444-2906.2008.01592.x

    Article  CAS  Google Scholar 

  • Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific Sea urchins. Evolution 51:1506–1517. doi:10.2307/2411203

    Article  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295. doi:10.1111/j.1471-8286.2005.01155.x

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539 doi:10.1093/bioinformatics/bts460

  • Penant G, Aurelle D, Feral JP, Chenuil A (2013) Planktonic larvae do not ensure gene flow in the edible sea urchin Paracentrotus lividus. Mar Ecol Prog Ser 480:155. doi:10.3354/meps10194

    Article  Google Scholar 

  • Perrin C (2002) The effects of fiord hydography and environment on the population genetic structures of the sea urchin Evechinus chloroticus and the sea star Coscinasterias muricata in New Zealand. Marine Science and Zoology, Dunedin

    Google Scholar 

  • Perrin C, Roy MS (2000) Rapid and efficient identification of microsatellite loci from the sea urchin, Evechinus chloroticus. Mol Ecol 9:2221–2223

    Article  CAS  PubMed  Google Scholar 

  • Phillips NE, Shima JS (2006) Differential effects of suspended sediments on larval survival and settlement of New Zealand urchins Evechinus chloroticus and abalone Haliotis iris. Mar Ecol Prog Ser 314:149–158. doi:10.3354/meps314149

  • Piggott MP, Banks SC, Tung P, Beheregaray LB (2008) Genetic evidence for different scales of connectivity in a marine mollusc. Mar Ecol Prog Ser 365:127–136. doi:10.3354/meps07478

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rasmussen LL, Cornuelle BD, Levin LA, Largier JL, Di Lorenzo E (2009) Effects of small-scale features and local wind forcing on tracer dispersion and estimates of population connectivity in a regional scale circulation model. J Geophys Res Oceans. doi:10.1029/2008jc004777

    Google Scholar 

  • Raymond M, Rousset F (1995) An exact test for population differentiation. Evolution 49:1280–1283

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225. doi:10.2307/2409177

    Article  Google Scholar 

  • Ross PM, Hogg ID, Pilditch CA, Lundquist CJ (2009) Phylogeography of New Zealand’s coastal benthos. N Z J Mar Freshwat Res 43:1009–1027

    Article  Google Scholar 

  • Ross PM, Hogg ID, Pilditch CA, Lundquist CJ, Wilkins RJ (2012) Population genetic structure of the New Zealand Estuarine Clam Austrovenus stutchburyi (Bivalvia: Veneridae) reveals population subdivision and partial congruence with biogeographic boundaries. Estuaries Coasts 35:143–154. doi:10.1007/s12237-011-9429-z

    Article  CAS  Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in marine invertebrates. In: Carlson CA, Giovannoni SJ (eds) Annual review of marine science, 3rd edn., pp 509–535. doi:10.1146/annurev-marine-120709-142756

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234. doi:10.1038/72708

    Article  CAS  PubMed  Google Scholar 

  • Shanks AL (2009) Pelagic larval duration and dispersal distance revisited. Biol Bull 216:373–385

    PubMed  Google Scholar 

  • Shanks AL, Grantham BA, Carr MH (2003) Propagule dispersal distance and the size and spacing of marine reserves. Ecol Appl 13:S159–S169

    Article  Google Scholar 

  • Shears NT, Smith F, Babcock RC, Duffy CAJ, Villouta E (2008) Evaluation of biogeographic classification schemes for conservation planning: application to New Zealand’s coastal marine environment. Conserv Biol 22:467–481. doi:10.1111/j.1523-1739.2008.00882.x

    Article  PubMed  Google Scholar 

  • Sherwin WB, Jabot F, Rush R, Rossetto M (2006) Measurement of biological information with applications from genes to landscapes. Mol Ecol 15:2857–2869

    Article  PubMed  Google Scholar 

  • Smith F (2004) Marine environment classification: physical influences on rocky reef assemblages in the Hauraki Gulf. Department of Conservation

  • Stevens MI, Hogg ID (2004) Population genetic structure of New Zealand’s endemic corophiid amphipods: evidence for allopatric speciation. Biol J Linn Soc 81:119–133. doi:10.1111/j.1095-8312.2004.00270.x

    Article  Google Scholar 

  • Treml EA, Halpin PN, Urban DL, Pratson LF (2008) Modeling population connectivity by ocean currents, a graph-theoretic approach for marine conservation. Landscape Ecol 23:19–36. doi:10.1007/s10980-007-9138-y

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538. doi:10.1111/j.1471-8286.2004.00684.x

    Article  Google Scholar 

  • Veale AJ, Lavery SD (2011) Phylogeography of the snakeskin chiton Sypharochiton pelliserpentis (Mollusca: Polyplacophora) around New Zealand: are seasonal near-shore upwelling events a dynamic barrier to gene flow? Biol J Linn Soc 104:552–563. doi:10.1111/j.1095-8312.2011.01743.x

    Article  Google Scholar 

  • Veale AJ, Lavery SD (2012) The population genetic structure of the waratah anemone (Actinia tenebrosa) around New Zealand. N Z J Mar Freshwat Res 46:523–536. doi:10.1080/00288330.2012.730053

    Article  Google Scholar 

  • Ward RD, Holmes BH, O'Hara TD (2008) DNA barcoding discriminates echinoderm species. Mol Ecol Res 8:1202–1211. doi:10.1111/j.1755-0998.2008.02332.x

  • Walker JW (2007) Effects of fine sediments on settlement and survival of the sea urchin Evechinus chloroticus in northeastern New Zealand. Mar Ecol Prog Ser 331:109–118. doi:10.3354/meps331109

  • Waters JM, Roy MS (2004) Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow? Mol Ecol 13:2797–2806. doi:10.1111/j.1365-294X.2004.02282.x

    Article  CAS  PubMed  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Marine Ecol Prog Ser 393:1–12. doi:10.3354/meps08287

    Article  Google Scholar 

  • Wei KJ, Wood AR, Gardner JPA (2013a) Population genetic variation in the New Zealand greenshell mussel: locus-dependent conflicting signals of weak structure and high gene flow balanced against pronounced structure and high self-recruitment. Mar Biol 160:931–949. doi:10.1007/s00227-012-2145-9

    Article  Google Scholar 

  • Wei KJ, Wood AR, Gardner JPA (2013b) Seascape genetics of the New Zealand greenshell mussel: sea surface temperature explains macrogeographic scale genetic variation. Mar Ecol Prog Ser 477:107–121. doi:10.3354/meps10158

    Article  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population-structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • White C, Selkoe KA, Watson J, Siegel DA, Zacherl DC, Toonen RJ (2010) Ocean currents help explain population genetic structure. Proc Royal Soc B-Biol Sci 277:1685–1694. doi:10.1098/rspb.2009.2214

    Article  Google Scholar 

  • Will M, Hale ML, Schiel DR, Gemmell NJ (2011) Low to moderate levels of genetic differentiation detected across the distribution of the New Zealand abalone, Haliotis iris. Mar Biol 158:1417–1429. doi:10.1007/s00227-011-1659-x

    Article  Google Scholar 

  • Wright S (1951) The Genetical structure of populations. Annals of Eugenics 15:323–354

    Article  CAS  PubMed  Google Scholar 

  • Wright S (1965) The interpretation of population-structure by F-statics with special regard to systems of mating. Evolution 19:395–420

    Article  Google Scholar 

  • Yearsley JM, Viard F, Broquet T (2013) The effect of collective dispersal on the genetic structure of a subdivided population. Evolution 67:1649–1659. doi:10.1111/evo.12111

    Article  PubMed  Google Scholar 

  • Zulliger DE, Tanner S, Ruch M, Ribi G (2009) Genetic structure of the high dispersal Atlanto-Mediterreanean sea star Astropecten aranciacus revealed by mitochondrial DNA sequences and microsatellite loci. Mar Biol 156:597–610. doi:10.1007/s00227-008-1111-z

Download references

Acknowledgments

We would like to acknowledge all the assistance in collecting samples from the students and staff of the Molecular Ecology Laboratory and Marine Ecology Laboratory at the University of Auckland, thank you to S. Nagel, A. Veale, M. Hudson, R. Gallego, S. Knudson, E. Zarate, E. Baker, and S. Connell. We would also like to thank Dr. Mike Barker from the University of Otago, Dunedin and Phred Dobbins from the New Zealand Department of Conservation for obtaining samples from Stewart Island. This research was supported by the Faculty of Science, University of Auckland, and the Department of Conservation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meredith M. Nagel.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 67 kb)

Supplementary material 2 (PDF 81 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nagel, M.M., Sewell, M.A. & Lavery, S.D. Differences in population connectivity of a benthic marine invertebrate Evechinus chloroticus (Echinodermata: Echinoidea) across large and small spatial scales. Conserv Genet 16, 965–978 (2015). https://doi.org/10.1007/s10592-015-0716-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-015-0716-2

Keywords

Navigation