Skip to main content

Advertisement

Log in

Genetic structure of the black rhinoceros (Diceros bicornis) in south-eastern Africa

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Despite an on-going struggle to conserve the endangered black rhinoceros (Diceros bicornis) since the 1980s, huge capital investment and several genetic surveys, the level of genetic structure and connectivity among populations in southern Africa is not well understood. Here, we undertake a major population genetic study of black rhinoceros in the Zimbabwe Lowveld, an area inhabited by over half of that country’s original Zambezi descendants plus one large population sourced from the relict KwaZulu stock of South Africa. Using nuclear microsatellite and mitochondrial DNA data, we found much higher levels of genetic diversity in the indigenous Zimbabwean populations, where observed multilocus heterozygosity was 0.54 versus 0.40 in KwaZulu, and maternal haplotype diversity was 0.77 versus 0.03. We show, for the first time, that both gene pools can be differentiated from each other on the basis of nuclear markers. This, along with the discovery of recent gene flow between all Lowveld populations, suggests that Zimbabwean and South African gene pools were prehistorically connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson-Lederer RM, Linklater WL, Ritchie PA (2012) Limited mitochondrial DNA variation within South Africa’s black rhino (Diceros bicornis minor) population and implications for management. Afr J Ecol 50:404–413

    Article  Google Scholar 

  • Bandelt H-J, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004). GENETIX 4.02, logiciel sous Windows TM pour la génétique des populations, Laboratoire Génome, Populations, Interactions; CNRS UMR 5000; Université Montpellier II, Montpellier

  • Brown SM, Houlden BA (1999) Isolation and characterization of microsatellite markers in the black rhinos (D. bicornis). Mol Ecol 8:1559–1561

    Article  CAS  PubMed  Google Scholar 

  • Brown SM, Houlden BA (2000) Conservation genetics of the black rhinoceros (D. bicornis). Conserv Genet 1:365–370

    Article  CAS  Google Scholar 

  • Campbell NJH, Harriss FC, Elphinstone MS, Baverstock PR (1995) Outgroup heteroduplex analysis using temperature gradient gel electrophoresis–high resolution large scale screening of DNA variation in the mitochondrial control region. Mol Ecol 4:407–418

    Article  CAS  PubMed  Google Scholar 

  • Child GFT, Riney T (1987) Tsetse control hunting. I. Zimbabwe, 1919–1958. Zambezia 14:11–71

    Google Scholar 

  • Cumming D, Du Toit R, Stuart SN (1990) African elephants and rhinos: Status survey and conservation action plan. IUCN, Gland

    Google Scholar 

  • Cunningham J, Harley EH, O’Ryan C (1999) Isolation and characterization of microsatellite loci in black rhinoceros (Diceros bicornis). Electrophoresis 20:1778–1780

    Article  CAS  PubMed  Google Scholar 

  • Drummond WH (1876) On the African rhinoceroses. Proc Zool Soc Lond 1876:109–114

    Google Scholar 

  • Emslie R (2013) African Rhinoceroses–Latest trends in rhino numbers and poaching. An update to Doc 54-2-Annexe 2 from the IUCN Species Survival Commission’s (IUCN/SSC)

  • Emslie R, Brooks M (1999) African Rhino: Status survey and action plan. IUCN/SSC African rhino specialist group, Gland

    Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Fernando P, Polet G, Foead N, Ng LS, Pastorini J, Melnick DJ (2006) Genetic diverisity, phylogeny and conservation of the Javan rhinoceros (Rhinoceros sondaicus). Conserv Genet 7:439–448

    Article  CAS  Google Scholar 

  • Florescu A, Davila JA, Scott C, Fernando P, Kellners K, Morales JC, Melnick D, Boag PT, van Coeverden de Groot P (2003) Polymorphic microsatellites in white rhinoceros. Mol Ecol Notes 3:344–345

    Article  CAS  Google Scholar 

  • Fraser AD (1958) On the present status of ungulates in Southern Rhodesia. Mammalia 22:469–475

    Google Scholar 

  • Groves CP (1967) Geographic variation in the black rhinoceros (Diceros bicornis Linnaeus, 1758). Zeitschrift fur Säugetierkunde 32:267–276

    Google Scholar 

  • Groves CP, Grubb P (2011) Ungulate Taxonomy. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Hall-Martin A (1979) Black rhinoceros in Southern Africa. Oryx 15(1):26–32

    Article  Google Scholar 

  • Harley EH (2002) AGARST, version 2.8, a program for calculating allele frequencies, GST and RST from microsatellite data. Wildlife Genetics Unit, University of Cape Town, Cape Town

  • Harley EH, Baumgarten I, Cunningham J, O’Ryan P (2005) Genetic variation and population structure in remnant populations of Black Rhinoceros, Diceros bicornis, in Africa. Mol Ecol 14:2981–2990

    Article  CAS  PubMed  Google Scholar 

  • Karsten M, Jansen van Vuuren B, Goodman P, Barnaud A (2011) The history and management of black rhino in KwaZulu-Natal: a population genetic approach to assess the past and guide the future. Anim Conserv 14:363–370

    Article  Google Scholar 

  • Leader-Williams N (1992) The world trade in Rhinoceros horn: a review. TRAFFIC International, Cambridge

    Google Scholar 

  • Leader-Williams N (2002) Regulation and protection: successes and failures in rhinoceros conservation. In: Oldfield S (ed) The Trade in Wildlife: Regulation for Conservation. Earthscan, London, pp 89–99

    Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Milliken TKN, Thomsen JB (1993) The decline of the black rhino in Zimbabwe: implications for future rhino conservation. TRAFFIC International, Cambridge

    Google Scholar 

  • Milliken, T, Emslie RH, Talukdar B (2009) African and Asian Rhinoceroses –Status, Conservation and Trade. In a report from the IUCN Species Survival Commission (IUCN/SSC), Gland

  • Moro D, Campbell NJH, Elphinstone MS, Baverstock PR (1998) The Thevenard Island mouse: historic and conservation implications from mitochondrial DNA sequence-variation. Pac Conserv Biol 4:282–288

    Google Scholar 

  • Muya SM, Bruford MW, Muigai AW-T, Osiemo ZB, Mwachiro E, Okita-Ouma B, Goossens B (2011) Substantial molecular variation and low genetic structure in Kenya’s black rhinoceros: implications for conservation. Conserv Genet 12:1575–1588

    Article  CAS  Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nielsen L, Meehan-Meola D, Kilbourn A, Alcivar-Warren A (2008) Characterization of microsatellite loci in the black rhinoceros (Diceros bicornis) and white rhinoceros (Ceratotherium simum): their use for cross-species amplification and differentiation between the two species. Conserv Genet 9:239–242

    Article  CAS  Google Scholar 

  • Paetkau D, Slade R, Burden M, Estoup A (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Pritchard J, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Nat Acad Sci USA 94:9197–9201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rohrer GA, Alexander LJ, Keele JW, Smith TP, Beattie CW (1994) A microsatellite linkage map of the porcine genome. Genetics 136:231–244

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosenberg NA (2004) Distruct: a program for the graphical display of population structure. Mol Ecol Notes 4:137–138

    Article  Google Scholar 

  • Roth HH (1967) White and black rhinoceros in Rhodesia. Oryx 9:217–231

    Article  Google Scholar 

  • Scott CA (2008) Microsatellite variability in four contemporary rhinoceros species: implications for conservation. Queen’s University Kingston, Kingston

    Google Scholar 

  • Swart MKJ, Ferguson JWH (1997) Conservation implications of genetic differentiation in Southern African populations of black rhinoceros (Diceros bicornis). Conserv Biol 11:79–83

    Article  Google Scholar 

  • Van Coeverden de Groot PJ, Putnam AS, Erb P, Scott C, Melnick D, O’Ryan C, Boag PT (2011) Conservation genetics of the black rhinoceros, Diceros bicornis bicornis, in Namibia. Conserv Genet 12:783–792

    Article  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

Download references

Acknowledgments

We thank the International Rhino Foundation and the US Fish and Wildlife Service for financial support. We thank Steve Smith for comments on an earlier version of the manuscript.

Conflict of interest

The authors of this article have no financial or non-financial competing interests.

Funding

This work was supported by the International Rhino Foundation and the United States Fish and Wildlife Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Desiré Lee Dalton.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotzé, A., Dalton, D.L., du Toit, R. et al. Genetic structure of the black rhinoceros (Diceros bicornis) in south-eastern Africa. Conserv Genet 15, 1479–1489 (2014). https://doi.org/10.1007/s10592-014-0632-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-014-0632-x

Keywords

Navigation