Skip to main content

Advertisement

Log in

Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Small or isolated populations are highly susceptible to stochastic events. They are prone and vulnerable to random demographic or environmental fluctuations that could lead to extinction due to the loss of alleles through genetic drift and increased inbreeding. We studied Ambystoma leorae an endemic and critically threatened species. We analyzed the genetic diversity and structure, effective population size, presence of bottlenecks and inbreeding coefficient of 96 individuals based on nine microsatellite loci. We found high levels of genetic diversity expressed as heterozygosity (Ho = 0.804, He = 0.613, He* = 0.626 and HNei = 0.622). The population presents few alleles (4–9 per locus) and genotypes (3–14 per locus) compared with other mole salamanders species. We identified three genetically differentiated subpopulations with a significant level of genetic structure (FST = 0.021, RST = 0.044 y Dest = 0.010, 95 % CI). We also detected a reduction signal in population size and evidence of a genetic bottleneck (M = 0.367). The effective population size is small (Ne = 45.2), but similar to another mole salamanders with restricted distributions or with recently fragmented habitat. The inbreeding coefficient levels detected are low (FIS = −0.619–0.102) as is gene flow. Despite, high levels of genetic diversity A. leorae is critically endangered because it is a small isolated population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams EM, Jones AG, Arnold SJ (2005) Multiple paternity in a natural population of a salamander with long-term sperm storage. Mol Ecol 14:1803–1810

    Article  PubMed  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell, Hoboken

    Google Scholar 

  • Antao T, Lopes A, Lopes R, Beja-Pereira A, Luikart G (2008) LOSITAN: a workbench to detect molecular adaptation based on a Fst-outlier method. BMC Bioinformatics 9:323

    Article  PubMed  PubMed Central  Google Scholar 

  • Belkhir K, Borsa P, Chikhi L, Raufaste N, Bonhomme F (2004) GENETIX 405 Logiciel sous Windows TM pour la Génétique des Populations

  • Cabe PR, Page RB, Hanlon TJ, Aldrich ME, Connors L, Marsh DM (2007) Fine-scale population differentiation and gene flow in a terrestrial salamander (Plethodon cinereus) living in continuous habitat. Heredity 98:53–60

    Article  CAS  PubMed  Google Scholar 

  • Calhoun AJK, deMaynadier PG (2008) Science and conservation of vernal pools in northeastern North America. CRC Press, Boca Raton

    Google Scholar 

  • Castañeda-Rico S, León-Paniagua L, Ruedas LA, Vázquez-Domínguez E (2011) High genetic diversity and extreme differentiation in the two remaining populations of Habromys simulatus. J Mammal 92:963–973

    Article  Google Scholar 

  • Chapuis M, Estoup PA (2007) Microsatellite null alleles and estimation of population differentiation. Mol Biol Evol 24:621–631

    Article  CAS  PubMed  Google Scholar 

  • Cournet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent populations bottleneck from allele frequency data. Genetics 144:2001–2014

    Google Scholar 

  • Crawford NG (2010) SMOGD: software for the measurement of genetic diversity. Mol Ecol Resour 10:556–557

    Article  PubMed  Google Scholar 

  • Curtis JMR, Taylor EB (2003) The genetic structure of coastal giant salamanders (Dicamptodon tenebrosus) in a managed forest. Biol Conserv 115:45–54

    Article  Google Scholar 

  • Davis AB, Verrell PA (2005) Demography and reproductive ecology of the Columbia spotted frog (Rana luteiventris) across the Palouse. Can J Zool 83:702–711

    Article  Google Scholar 

  • Degne JF, Stout IJ, Roth JD, Parkinson CL (2007) Population genetics and conservation of the threatened southeastern beach mouse (Peromyscus polionotus niveiventris): subspecies and evolutionary units. Conserv Genet 8:1441–1452

    Article  Google Scholar 

  • Dlugosh KM, Parker M (2008) Founding events in species invasions: genetic variation adaptive evolution and the role of multiple introductions. Mol Ecol 17:431–449

    Article  Google Scholar 

  • Dyer RJ (2009) GeneticStudio: a suite of programs for the spatial analysis of genetic marker data. Mol Ecol Resour 9:110–113

    Article  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 35: a new series of programs to perform population genetics analyses under Linux and Windows. Mol Ecol Resour 10:564–567

    Article  PubMed  Google Scholar 

  • Excoffier L, Smmosue PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA Haplotypes: applications to Human Mitochondrial DNA Restriction Data. Genetics 131:479–491

    CAS  PubMed  Google Scholar 

  • Frankham R (1998) Inbreeding and extinction: island populations. Conserv Biol 12:665–675

    Article  Google Scholar 

  • Frankham R (2009) Effective population size/adult population size ratios in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Frankham R, Ballou J, Briscoe D (2005) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Funk WC, Tallmon DA, Allendorf FW (1999) Small effective population size in the long-toed salamander. Mol Ecol 8:1633–1640

    Article  CAS  PubMed  Google Scholar 

  • Funk WC, Blouin MS, Corn PS, Maxell BA, Pilliod DS, Amish S, Allendorf FW (2005) Population structure of Columbia spotted frogs (Rana luteiventris) is strongly affected by the landscape. Mol Ecol 14:483–496

    Article  CAS  PubMed  Google Scholar 

  • Gaggiotti OE, Lange O, Rassmann K, Gliddons C (1999) A comparison of two indirect methods for estimating average levels of gene for using microsatellite data. Mol Ecol 8:1513–1520

    Article  CAS  PubMed  Google Scholar 

  • Gamble LR, McGarigal K, Jenkins CL, Timm BC (2006) Limitations of regulated “buffer zones” for the conservation of Marbled Salamanders. Wetlands 26:298–306

    Article  Google Scholar 

  • Gamble LR, McGarigal K, Compton BW (2007) Fidelity and dispersal in the pond-breeding amphibian. Ambystoma opacum: implications for spatio-temporal population dynamics and conservation. Biol Conserv 139:247–257

    Article  Google Scholar 

  • Garner A, Rachlow J, Waits L (2005) Genetic diversity and population divergence in fragmented habitats: conservation of Idaho ground squirrels. Conserv Genet 6:759–774

    Article  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Gibbs JP (1998) Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecol 13:263–268

    Article  Google Scholar 

  • Giordano AR, Ridenhour BJ, Storfer A (2007) The influence of altitude and topography on genetic structure in the long-toed salamander (Ambystoma macrodactulym). Mol Ecol 16:1625–1637

    Article  CAS  PubMed  Google Scholar 

  • Goprenko D, Williams RN, DeWoody JA (2007) Reproductive and mating success in the small-mouthed salamander (Ambystoma texanum) estimated via microsatellite parentage analysis. Evol Biol 34:130–139

    Article  Google Scholar 

  • Greenwald KR, Gibbs HL, Waite AT (2009) Efficacy of land-cover models in predicting isolation of marbled salamander populations in a fragmented landscape. Conserv Biol 25:1232–1241

    Article  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5(3):712–715

    Article  CAS  Google Scholar 

  • Hedrick P (2005) Genetics of populations. Jones and Bartlett, Sudbury

    Google Scholar 

  • Hedrick PW, Parker KM, Lee RN (2001) Using microsatellite and MHC variation to identify species ESUs and MUs in the endangered Sonoran topminnow. Mol Ecol 10:1399–1412

    Article  CAS  PubMed  Google Scholar 

  • Hicks NG, Pearson SM (2003) Salamander diversity and abundance in forests with alternative land use histories in the Southern Blue Ridge Mountains. For Ecol Manag 177:117–130

    Article  Google Scholar 

  • Jehle R, Arntzen JW (2002) Microsatellite markers in amphibian conservation genetics. Herpetol J 12:1–9

    Google Scholar 

  • Jehle R, Wilson GA, Arntzen JW, Burke T (2005) Contemporary gene flow and the spatio-temporal genetic structure of subdivided newt populations (Triturus cristatus, T marmoratusi). J Evol Biol 18:619–628

    Article  CAS  PubMed  Google Scholar 

  • Johansson M, Primmer CR, Merila J (2006) History vs current demography: explaining the genetic population structure of the common frog (Rana temporaria). Mol Ecol 15:975–983

    Article  CAS  PubMed  Google Scholar 

  • Johnson JR, Johnson BB, Shaffer B (2010) Genotype and temperature affect locomotor performance in a tiger salamander hybrid swarm. Funct Ecol 24:1073–1080

    Article  Google Scholar 

  • Jost L (2008) GST and its relatives do not measure differentiation. Mol Ecol 17:4015–4026

    Article  PubMed  Google Scholar 

  • Kalinowski S, Wagner AP, Taper ML (2006) ML-RELATE: a computer program for maximum likelihood estimation of relatedness and relationship. Mol Ecol Notes 6:576–579

    Article  CAS  Google Scholar 

  • Kilpatrick CW (1981) Genetic structure of insular populations. In: Smith MH, Joule J (eds) Mammalian population genetics. University of Georgia Press, Athens, pp 28–59

  • Kim I, Phillips J, Monjeau J, Birney E, Noack K, Pumo D, Sikes R, Dole J (1998) Habitat islands genetic diversity and gene flow in a Patagonian rodent. Mol Ecol 7:667–678

    Article  CAS  PubMed  Google Scholar 

  • Kinkead KE, Abbott AG, Otis DL (2006) Genetic variation among Ambystoma breeding populations on the Savannah River Site. Conserv Genet 8:281–292

    Article  Google Scholar 

  • Kohn MH, York EC, Kanradt DA, Haught G, Sauvajot RM, Wayne RK (1999) Estimating population size by genotyping feces. Proc R Soc Lond B Biol Sci 266:657–663

    Article  CAS  Google Scholar 

  • Lande R (1988) Demographic models of the Northern Spotted Owl (Strix occidentalis cuurina). Oecologia 75:601–607

    Article  Google Scholar 

  • Langella O (2002) Populations 1230 Copyright (C) 1999 Olivier Langella CNRS-UPR9034. Available at http://bioinformaticsorg/;tryphon/populations/

  • Lemos-Espinal J, Smith GR, Ballinger RE, Ramírez-Bautista A (1999) Status of protected endemic salamanders (Ambystoma: Ambystomatidae: Caudata) in the transvolcanic belt of México. British J Herpetol 68:1–4

    Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:209–220

    CAS  PubMed  Google Scholar 

  • Marsh DM, Page RB, Hanlon TJ, Bareke H, Corritone R, Jetter N, Beckman NG, Gardner K, Selfert DE, Cabe PR (2007) Ecological and genetic evidence that low order stream inhibit dispersal by red-backed salamanders (Plethodon cinereus). Can J Zool 85:319–327

    Article  Google Scholar 

  • Masters BS, Forester DC (1995) Kin recognition in a brooding salamander. Proc R Soc Lond B Biol Sci 261:43–48

    Article  Google Scholar 

  • Michalakis Y, Excoffier L (1996) A generic estimation of population subdivision using distances between alleles with special reference to microsatellite loci. Genetics 142:1061–1064

    CAS  PubMed  Google Scholar 

  • Monroy Vilchis O, Zarco-González M, Domínguez-Vega H (2012) Los verdaderos habitantes del monte Tláloc: diversidad e importancia de la fauna. Dirección de difusión y promoción de la investigación y los estudios avanzados. Monte Tláloc II. La casa del dios del agua. Universidad Autónoma del Estado de México, Gobierno del Estado de México, In, pp 111–135

    Google Scholar 

  • Moritz C (1994) Defining “Evolutionary significant units” for conservation. Trends Ecol Evol 9:373–375

    Article  CAS  PubMed  Google Scholar 

  • Moritz C (1995) Uses of molecular phylogenies for conservation. Philos Trans R Soc Lond 349:113–118

    Article  Google Scholar 

  • Myers EM, Zamudio KR (2004) Multiple paternity in an aggregate breeding amphibian: the effect of reproductive skew on estimates of male reproductive success. Mol Ecol 13:1951–1963

    Article  CAS  PubMed  Google Scholar 

  • Naughton GP, Henderson CB, Foresman KR, McGraw RL II (2000) Long-toed salamanders in harvested and intact Douglas-fir forests of western Montana. Ecol Appl 10:1681–1689

    Article  Google Scholar 

  • Nei M (1972) Genetic distance between populations. Am Nat 106:283–292

    Article  Google Scholar 

  • Nei M (1973) Analysis of gene diversity in subdivided populations. Proc Natl Acad Sci USA 70:3321–3323

    Article  CAS  PubMed  Google Scholar 

  • Newman RA, Squire T (2001) Microsatellite variation and fine-scale population structure in the wood frog (Rana sylvatica). Mol Ecol 10:1087–1100

    Article  CAS  PubMed  Google Scholar 

  • Newman D, Tallmon DA (2001) Experimental evidence for beneficial fitness effects of gene flow in recently isolated populations. Conserv Biol 15:1054–1063

    Article  Google Scholar 

  • Noël S, Lapointe FJ (2010) Urban conservation genetics: study of a terrestrial salamander in the city. Biol Conserv 143:2823–2831

    Article  Google Scholar 

  • Noël S, Ouellet M, Galois P, Lapointe FJ (2007) Impact of urban fragmentation on the genetic structure of the eastern red-backed salamander. Conserv Genet 8:599–606

    Article  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  CAS  PubMed  Google Scholar 

  • Palo JU, O’Hara RB, Laugen AR (2003) Latitudinal divergence on common frog (Rana temporaria) life history traits by natural selection evidence from a comparison of molecular and quantitative genetic data. Mol Ecol 12:1963–1978

    Article  CAS  PubMed  Google Scholar 

  • Palsbøll P, Berube M, Allendorf F (2007) Identification of management units using population genetic data. Trends Ecol Evol 22:11–16

    Article  PubMed  Google Scholar 

  • Parra-Olea G, Recuero E, Zamudio KR (2007) Primer note: polymorphic microsatellite markers for Mexican salamanders of the genus Ambystoma. Mol Ecol Notes 7:818–820

    Article  CAS  Google Scholar 

  • Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in Excel Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Article  Google Scholar 

  • Pfennig DW, Sherman PW, Collins JP (1994) Kin recognition and cannibalism in polyphenic salamanders. Behav Ecol 5:225–232

    Article  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Piry S, Alapetite A, Cornuet JM, Paetkau D, Baudouin L, Estoup A (2004) GeneClass 2: a software for genetic assignment and first-generation migrant detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Purrenhage JL, Niewiarowski PH, Moore FBG (2009) Population structure of spotted salamanders (Ambystoma maculatum) in a fragmented landscape. Mol Ecol 18:235–247

    Article  CAS  PubMed  Google Scholar 

  • Queller DC, Goodnigh KF (1989) Estimating relatedness using genetic markers. Evolution 43:258–275

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP v 12: population genetics software for exact test and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Rhoads EA (2011) Landscape genetics of the small-mouthed salamander (Ambystoma texanum) in a Fragmented Habitat: impacts of landscape change on breeding populations in Hardin county Ohio forests. PhD Thesis. University of Dayton

  • Rowe G, Beebee TJC (2004) Reconciling genetic and demographic estimators of effective population size in the anuran amphibian Bufo calamita. Conserv Genet 5:287–298

    Article  CAS  Google Scholar 

  • Rowe G, Beebee TJC, Burke T (2000) A microsatellite analysis of natterjack toad Bufo calamita metapopulations. Oikos 88:641–651

    Article  Google Scholar 

  • Savage WK, Zamudio KR (2005) Species account: Ambystoma maculatum. In: Lannoo MJ (ed) Amphibian declines: the conservation status of United States species. University of California Press, Berkeley, California, pp 621–627

  • Savage WK, Fremier AK, Shaffer HB (2010) Landscape genetics of alpine Sierra Nevada salamanders reveals extreme population subdivision in space and time. Mol Ecol 19:3301–3314

    Article  PubMed  Google Scholar 

  • Searcy CA, Shaffer HB (2008) Calculating biologically accurate mitigation credits: insights from the California tiger salamander. Conserv Biol 22:997–1005

    Article  PubMed  Google Scholar 

  • SEMARNAT (2010) Norma Oficial Mexicana NOM-059- SEMARNAT-2010, Protección ambiental-Especies nativas de México de flora y fauna silvestres-Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación, 10 diciembre 2010, México

  • Semlitsch RD (2008) Differentiating migration and dispersal processes for pond-breeding amphibians. J Wildl Manag 72:260–267

    Article  Google Scholar 

  • Shaffer B, Parra-Olea G, Wake D (2004) Ambystoma leorae. In: IUCN 2012. IUCN Red List of Threatened Species. Version 2012.2. www.iucnredlist.org. Accessed on 25 Apr 2013

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    CAS  PubMed  Google Scholar 

  • Spear S, Storfer A (2010) Anthropogenic and natural disturbance lead to differing patterns of gene flow in the Rocky Mountain tailed frog, Ascaphus montanus. Biol Conserv 143:778–786

    Article  Google Scholar 

  • Spear S, Peterson FCR, Matocq MD, Storfer A (2005) Landscape genetics of the blotched tiger salamander (Ambystoma tigrinum melanostictum). Mol Ecol 14:2553–2564

    Article  CAS  PubMed  Google Scholar 

  • Steinfartz S, Stemshorn K, Kuesters D, Tautz D (2006) Patterns of multiple paternity within and between annual reproduction cycles of the fire salamander (Salamandra salamandra) under natural conditions. J Zool 268:1–8

    Article  Google Scholar 

  • Summitt SD (2009) Determination of dispersal patterns of the small-mouthed salamander (Ambystoma texanum) in Eagle Creek Park (Indianapolis, IN). BSc Thesis. Butler University

  • Taylor EH (1943) Herpetological novelties from Mexico. Univ Kanas Sci Bull 29:343–361

    Google Scholar 

  • Templeton A, Read B (1994) Inbreeding: One word several meanings much confusion. In: Loeschcke, Tomiuk VJ, Jain SK (eds) Conservation Genetics. Birkhäuser, Basal, pp 91–105

  • Tennessen JA, Zamudio KR (2003) Early-male reproductive advantage multiple paternity and sperm storage in an amphibian aggregate breeder. Mol Ecol 12:1567–1576

    Article  CAS  PubMed  Google Scholar 

  • Trenham PC, Shaffer HB (2005) Amphibian upland habitat use and its consequences for population viability. Ecol Appl 15:1158–1168

    Article  Google Scholar 

  • Valière N (2002) GIMLET: a computer program for analyzing genetic individual identification data. Mol Ecol Notes 10:1046–1048

    Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Van Treuren R, Bijlsma R, Van Delden W, Ouborg N (1991) The significance of genetic erosion in the process of extinction. I. Genetic differentiation in Salvia pratensis and Scabiosa columbaria in relation to population size. Heredity 66:181–189

    Article  Google Scholar 

  • Vázquez-Domínguez E, Surárez-Atilano M, Booth W, González-Baca C, Cuarón AD (2012) Genetic evidence of a recent successful colonization of introduced species on islands: Boa constrictor imperator on Cozumel Island. Biol Invasions 14:2101–2116

    Article  Google Scholar 

  • Vences M, Wake DB (2007) Speciation species boundaries and phylogeography of amphibians. In: Heatwole H, Tyler M (eds) Amphibian biology. Surrey Beatty and Sons, Chipping Norton, pp 2613–2669

  • Waldman B (1988) The ecology of s kin recognition. Annu Rev Ecol Syst 19:543–571

    Article  Google Scholar 

  • Walls SC, Roudebush RE (1991) Reduced aggression toward siblings as evidence of kin recognition in cannibalistic salamanders. Am Nat 138:1027–1038

    Article  Google Scholar 

  • Wang IJ (2009) Fine-scale population structure in a desert amphibian: landscape genetics of the black toad (Bufo exsul). Mol Ecol 18:3847–3856

    Article  PubMed  Google Scholar 

  • Wang IJ, Summers K (2010) Genetic structure is correlated with phenotypic divergence rather than geographic isolation in the highly polymorphic strawberry poison-dart frog. Mol Ecol 19:447–458

    Article  PubMed  Google Scholar 

  • Wang IJ, Savage WK, Shaffer HB (2009) Landscape genetics and least-cost path analysis reveal unexpected dispersal routes in the California tiger salamander (Ambystoma californiense). Mol Ecol 18:1365–1374

    Article  PubMed  Google Scholar 

  • Waples RS (2006) A bias correction for estimates of effective population size based on linkage disequilibrium at unlinked gene loci. Conserv Genet 7:167–184

    Article  Google Scholar 

  • Waples RS, Do C (2008) LDNE: a program for estimating effective population size from data on linkage disequilibrium. Mol Ecol Resour 8:753–756

    Article  PubMed  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    Article  Google Scholar 

  • Yeh FC, Yang RC, Boyle T, Ye ZH, Mao J (1997) POPGENE, the user-friendly shareware for population genetic analysis. Molecular Biology and Biotechnology Center, University of Alberta, Edmonton

    Google Scholar 

  • Zamudio KR, Wieczorek AM (2007) Fine-scale spatial genetic structure and dispersal among spotted salamander (Ambystoma maculatum) breeding populations. Mol Ecol 16:257–274

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We deeply thank to Dr. Carlos Aguilar Ortigoza for borrowed a thermalcycler. We thank Brenda Cole and Carl Mitchell for valuable comments and English editing. We thank all the students who helped in field. We thank two anonymous reviewers for their comments that helped improve the manuscript. AS is grateful to the graduate program Maestría en Ciencias Agropecuarias y Recursos Naturales to Universidad Autónoma del Estado de México for the scholarship granted and also the scholarships received from CONACYT and COMECYT.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Octavio Monroy-Vilchis.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material (DOCX 347 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunny, A., Monroy-Vilchis, O., Fajardo, V. et al. Genetic diversity and structure of an endemic and critically endangered stream river salamander (Caudata: Ambystoma leorae) in Mexico. Conserv Genet 15, 49–59 (2014). https://doi.org/10.1007/s10592-013-0520-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-013-0520-9

Keywords

Navigation