Skip to main content

Advertisement

Log in

Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Genetic diversity is one of the most important criteria to identify unique populations for conservation purposes. In this study we analyze the genetic population structure of the endangered montane mayfly Ameletus inopinatus in its European range. The species is restricted to unpolluted cold-water streams, and exhibits an insular distribution across highlands of Central Europe and a more continuous distribution across Fennoscandia and Northern Euro-Siberia. We genotyped 389 individuals from 31 populations for eight highly polymorphic microsatellite loci to investigate genetic diversity and population structure within and among European mountain ranges. Genetic diversity of A. inopinatus decreases along an east–west gradient in Central Europe and along a north–south gradient in Fennoscandia, respectively. Centres of exceptionally high genetic diversity are located in the Eastern Alps (Andertal Moor, Austria), the High Tatra, the Beskides, the Sudety Mountains and the Eastern German Highlands. Species distribution modelling for 2080 projects major regional habitat loss, particularly in Central Europe mountain ranges. By relating these range shifts to our population genetic results, we identify conservation units primarily in Eastern Europe, that if preserved would maintain high levels of the present-day genetic diversity and continue to provide long-term suitable habitat under future climate warming scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alcamo J, Bouwman A, Edmonds J, Grübler A, Morita T, Sugandhy A (1995) An evaluation of the IPCC IS92 emission scenarios. In: Climate change 1994, radiative forcing of climate change and an evaluation of the IPCC IS92 emission scenarios. Cambridge University Press, Cambridge, pp 233–304

  • Alsos IG, Alm T, Normand S et al (2009) Past and future range shifts and loss of diversity in dwarf willow (Salix herbacea L.) inferred from genetics, fossils and modelling. Glob Ecol Biogeogr 18:223–239

    Article  Google Scholar 

  • Araújo MB, New M (2006) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47

    Article  PubMed  Google Scholar 

  • Beebee TJC (2007) Population structure and its implications for conservation of the great silver beetle Hydrophilus piceus in Britain. Freshw Biol 52:2101–2111

    Article  CAS  Google Scholar 

  • Böhmer J, Rawer-Jost C, Zenker A (2004) Multimetric assessment of data provided by water managers from Germany: assessment of several different types of stressors with macrozoobenthos communities. Hydrobiologia 516:215–228

    Article  Google Scholar 

  • Bonin A, Bellemain E, Bronken Eidesen P, Pompanon F, Brochmann C, Taberlet P (2004) How to track and assess genotyping errors in population genetic studies. Mol Ecol 13:3261–3273

    Article  PubMed  CAS  Google Scholar 

  • Buffagni A, Cazzola M, López-Rodríguez MJ, Alba-Tercedor J, Armanini DG (2009) In: Schmidt-Kloiber A, Hering D (eds) Distribution and ecological preferences of European freshwater organisms. Volume 3—Ephemeroptera. Pensoft Publishers, Sofia, pp 1–254

  • Bunn SE, Hughes JM (1997) Dispersal and recruitment in streams: evidence from genetic studies. J N Am Benthol Soc 16:338–346

    Article  Google Scholar 

  • Chakraborty R, De Andrade M, Daiger SP, Budowle B (1992) Apparent heterozygote deficiencies observed in DNA typing data and their implications in forensic applications. Ann Hum Genet 56:45–57

    Article  PubMed  CAS  Google Scholar 

  • Cordellier M, Pfenninger M (2008) Climate driven range dynamics of the freshwater limpet, Ancylus fluviatilis (Pulmonata, Basommatophora). J Biogeogr 35:1580–1592

    Article  Google Scholar 

  • Crandall KA, Bininda-Emonds ORP, Mace GM, Wayne RK (2000) Considering evolutionary processes in conservation biology. Trends Ecol Evol 15:290–295

    Article  PubMed  Google Scholar 

  • Daking EE, Avise JC (2004) Microsatellite null alleles in parentage analysis. Heredity 93:504–509

    Article  Google Scholar 

  • Duelli P (1997) Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agric Ecosyst Environ 62:81–91

    Article  Google Scholar 

  • EU Commission (2010). http://ec.europa.eu/environment/nature/index_en.htm. Accessed 18 March 2010

  • European Environment Agency (2010) http://www.eea.europa.eu/de. Accessed 18 March 2010

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial-DNA restriction data. Genetics 131:479–491

    PubMed  CAS  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin version 3.11: an integrated software package for population genetics data analysis. Evol Bioinform Online 1:47–50

    PubMed  CAS  Google Scholar 

  • Felsenstein J (2008) PHYLIP (Phylogeny inference package) version 3.68. Available at http://evolution.genetics.washington.edu/phylip/software.html. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle

  • Fiedler PL, Jain SK (1992) Conservation biology: the theory and practice of nature conservation, preservation and management. Chapman and Hall, New York

    Google Scholar 

  • Frankham R, Ballou JD, Briscoe DA (2002) Introduction to conservation genetics. Cambridge University Press, Cambridge

    Google Scholar 

  • Freeland JR (2005) Molecular ecology. Wiley, Hoboken

    Google Scholar 

  • GBIF-Sweden (2010) GBIF data portal. http://data.gbif.org. Accessed 18 March 2010

  • Gienapp P, Teplitsky C, Alho JS, Mills JA, Merilä J (2008) Climate change and evolution: disentangling environmental and genetic responses. Mol Ecol 17:167–178

    Article  PubMed  CAS  Google Scholar 

  • Glaubitz JC (2004) CONVERT: a user friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol Ecol Notes 4:309–310

    Article  CAS  Google Scholar 

  • Graf W, Schultz H, Janececk B (2004) Ökofaunistische Erhebungen und Bewertung im Natura 2000-Gebiet St. Lorenzener Hochmoor, Makrozoobenthos Endbericht

  • Graham CH, Ferrier S, Huettman F, Moritz C, Townsend Peterson A (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Guillot G, Mortier F, Estoup A (2005) GENELAND: a computer package for landscape genetics. Mol Ecol Notes 5:712–715

    Article  CAS  Google Scholar 

  • Harte J, Ostling A, Green JL, Kinzig A (2004) Climate change and extinction risk. Nature. doi:10.1038/nature02718

  • Haybach A (2003) Zoogeographische Aspekte der Eintagsfliegenbesiedlung Deutschlands (Insecta, Ephemeroptera). Verhandlungen der westdeutschen Entomologentagung Düsseldorf 2002:187–209

    Google Scholar 

  • Hendrey GR, Wright RF (1976) Acid precipitation in Norway: effects on aquatic fauna. J Gt Lakes Res 2:192–207

    Article  Google Scholar 

  • Hering D, Schmidt-Kloiber A, Murphy J, Lücke S, Zamora-Muñoz C, López Rodríguez MJ, Huber T, Graf W (2009) Potential impact of climate change on aquatic insects: a sensitivity analysis for European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquat Sci 71:3–14

    Article  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hoelzel E (1967) Die Fauna des Hochmoores von St. Lorenzen in den Gurker Alpen. Carinthia 195–211

  • Hoffmann AA, Willi Y (2008) Detecting genetic responses to environmental change. Nat Rev Genet 9:421–432

    Article  PubMed  CAS  Google Scholar 

  • Houghton J (2001) The science of global warming. Interdiscip Sci Rev 26:247–257

    Article  Google Scholar 

  • Hughes AR, Inouye BD, Johnson MTJ, Underwood N, Vellend M (2008) Ecological consequences of genetic diversity. Ecol Lett 11:609–623

    Article  PubMed  Google Scholar 

  • Ihaka R, Gentleman R (1996) R: a language for data analysis and graphics. J Comp Graph Stat 5:299–314

    Article  Google Scholar 

  • Jackson JK, Resh VH (1992) Variation in genetic structure among populations of the caddisfly Helicopsyche borealis from three streams in northern California, U.S.A. Freshw Biol 27:29–42

    Article  Google Scholar 

  • Kalinowski ST (2004) Counting alleles with rarefaction: private alleles and hierarchical sampling designs. Conserv Genet 5:539–543

    Article  CAS  Google Scholar 

  • Leberg PL (2002) Estimating allelic richness: effects of sample size and bottlenecks. Mol Ecol 11:2445–2449

    Article  PubMed  CAS  Google Scholar 

  • Malzacher P, Jacob U, Haybach A, Reusch H (1998) Rote Liste der Eintagsfliegen (Ephemeroptera). In: Binot M, Bless R, Boye P, Gruttke H, Pretscher P (eds) Rote Liste gefährdeter Tiere Deutschlands, Bundesamt für Naturschutz (BfN). Bonn-Bad Godesberg, Germany, pp 264–267

    Google Scholar 

  • McNeely JA, Miller KR, Reid WV, Mittermeier RA, Werner TB (1990) Conserving the world’s biological diversity. World Conservation Union, World Resources Institute, Conservation International, World Wildlife Fund—US, and the World Bank, Washington, DC

    Google Scholar 

  • Moussalli A, Moritz C, Williams SE, Carnaval AC (2009) Variable responses of skinks to a common history of rainforest fluctuation: concordance between phylogeography and palaeo-distribution models. Mol Ecol 18:483–499

    Article  PubMed  Google Scholar 

  • Nei M, Tajima F, Tateno Y (1983) Accuracy of estimated phylogenetic trees from molecular data. J Mol Evol 19:153–170

    Article  PubMed  CAS  Google Scholar 

  • OTA (US Congress Office of Technology Assessment) (1987) Technologies to maintain biological diversity. US Government Printing Office, Washington, DC

    Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  PubMed  CAS  Google Scholar 

  • Pauls SU, Lumbsch T, Haase P (2006) Phylogeography of the montane caddisfly Drusus discolor: evidence for multiple refugia and periglacial survival. Mol Ecol 15:2153–2169

    Article  PubMed  CAS  Google Scholar 

  • Petit RJ, El Mousadik A, Pons O (1998) Identifying populations for conservation on the basis of genetic markers. Conserv Biol 12:844–855

    Article  Google Scholar 

  • Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2) population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rosenberg DM, Resh VH (1993) Freshwater biomonitoring and benthic invertebrates. Chapman & Hall, New York

    Google Scholar 

  • Russev B, Vidinova Y (1994) Distribution and ecology of the representatives of some families of order Ephemeroptera (Insecta) in Bulgaria. Lauterbornia 19:107–113

    Google Scholar 

  • SAS Institute Inc. (2007) JMP user guide. SAS Institute Inc, Cary

    Google Scholar 

  • Schultz H, Janecek B, Hess M, Reusch H, Graf W (2004) Das Makrozoobenthos des Natura 2000 Gebietes St. Lorenzener Hochmoor (Andertal, Kernten) unter besonderer Berücksichtigung der Libellenfauna (Insecta: Odonata). Carinthia II 196:343–358

    Google Scholar 

  • Slatkin M (1995) A measure of population subdivision based on microsatellite allele frequencies. Genetics 139:457–462

    PubMed  CAS  Google Scholar 

  • Soldán T, Enktaivan S, Godunko RJ (2009) Commented checklist of mayflies (Ephemeroptera) of Mongolia. Aquat Insects 31:653–670

    Article  Google Scholar 

  • Taberlet P (1998) Biodiversity at the intraspecific level: the comparative phylogeographic approach. J Biotechnol 64:91–100

    Article  CAS  Google Scholar 

  • Takezaki N, Nei M (1996) Genetic distances and reconstruction of phylogenetic trees from microsatellite DNA. Genetics 144:389–399

    PubMed  CAS  Google Scholar 

  • Theissinger K, Feldheim KA, Taubmann J, Seitz A, Pauls SU (2008) Isolation and characterization of 10 higly polymorphic di- and trinucleotide microsatellite markers in the mayfly Ameletus inopinatus (Ephemeroptera: Siphlonuridae). Mol Ecol Resour 8:1285–1287

    Article  CAS  Google Scholar 

  • Thomas CD, Cameron A, Green RE, Bakkenes M, Beaumont LJ, Collingham YC et al (2004) Extinction risk from climate change. Nature 427:145–147

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout CV, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Wilcock HR, Bruford MW, Nichols RA, Hildrew AG (2007) Landscape, habitat characteristics and the genetic population structure of two caddisflies. Freshw Biol 52:1907–1929

    Article  CAS  Google Scholar 

  • Wright JF, Sutcliffe DW, Furse MT (eds) (2000) Assessing the biological quality of fresh waters: RIVPACS and other techniques. Freshwater Biological Association, Ambleside, Cumbria, UK

Download references

Acknowledgments

We are very grateful to Ralf Brettfeld, John Brittain, Michael Theobald, Hanno Voigt and André Wagner who supported this study by providing material, information, and help in the field. This study was financially supported by the German Research Foundation (DFG) grant HA 3431/2-1 awarded to PH and SUP, and HA 3431/2-2 awarded to PH and Alfred Seitz (Mainz), and the research funding programme ‘‘LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz’’ of Hesse’s Ministry of Higher Education, Research, and the Arts. KT and IL are supported by PhD scholarships of the Studienstiftung des deutschen Volkes (SdV). SUP gratefully acknowledges a German Academy of Sciences Leopoldina Postdoctoral Research Fellowship (BMBF-LPD 9901/8-169).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathrin Theissinger or Steffen U. Pauls.

Additional information

In memory of Prof. Dr. Alfred Seitz.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (JPEG 2375 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taubmann, J., Theissinger, K., Feldheim, K.A. et al. Modelling range shifts and assessing genetic diversity distribution of the montane aquatic mayfly Ameletus inopinatus in Europe under climate change scenarios. Conserv Genet 12, 503–515 (2011). https://doi.org/10.1007/s10592-010-0157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-010-0157-x

Keywords

Navigation