Skip to main content
Log in

The directed search method for multi-objective memetic algorithms

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

We propose a new iterative search procedure for the numerical treatment of unconstrained multi-objective optimization problems (MOPs) which steers the search along a predefined direction given in objective space. Based on this idea we will present two methods: directed search (DS) descent which seeks for improvements of the given model, and a novel continuation method (DS continuation) which allows to search along the Pareto set of a given MOP. One advantage of both methods is that they can be realized with and without gradient information, and if neighborhood information is available the computation of the search direction comes even for free. The latter makes our algorithms interesting candidates for local search engines within memetic strategies. Further, the approach can be used to gain some interesting insights into the nature of multi-objective stochastic local search which may explain one facet of the success of multi-objective evolutionary algorithms (MOEAs). Finally, we demonstrate the strength of the method both as standalone algorithm and as local search engine within a MOEA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. If the rank of \(J:= J(x_0)\) is k (i.e., maximal) the pseudo inverse is given by \(J^+ = J^T(JJ^T)^{-1}\).

  2. We note that the original idea of NBI is not to maximize the distance from \(F(x_0)\) for a given point \(x_0\), but this is a straightforward adaption to the current context.

References

  1. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Chichester (2001)

    MATH  Google Scholar 

  2. Beume, N., Naujoks, B., Emmerich, M.: SMS-EMOA: multiobjective selection based on dominated hypervolume. Eur. J. Oper. Res. 181(3), 1653–1669 (2007)

    Article  MATH  Google Scholar 

  3. Zhang, Q., Li, H.: MOEA/D: a multi-objective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  4. Knowles, J., Corne, D.: M-PAES: a memetic algorithm for multiobjective optimization. In: Proceedings of the IEEE Congress on Evolutionary Computation, pp. 325–332. Piscataway, NJ (2000)

  5. Ishibuchi, H., Yoshida, T., Murata, T.: Balance between genetic search and local search in memetic algorithms for multiobjective permutation flowshop scheduling. IEEE Trans. Evol. Comput. 7(2), 204–223 (2003)

    Article  Google Scholar 

  6. Lara, A., Sanchez, G., Coello, C.A.C., Schütze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112–132 (2010)

    Article  Google Scholar 

  7. Vasile, M., Zuiani, F.: Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proc. Inst. Mech. Eng. G 225(11), 1211–1227 (2011)

    Article  Google Scholar 

  8. Zuiani, F., Vasile, M.: Multi agent collaborative search based on tchebycheff decomposition. Comput. Optim. Appl. 56(1), 189–208 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Roy, B.: Problems and methods with multiple objective functions. Math. Program. 1, 239–266 (1971)

    Article  MATH  Google Scholar 

  10. Gembicki, F.W., Haimes, Y.Y.: Approach to performance and multiobjective sensivity optimization: the goal attainment method. IEEE Trans. Autom. Control 20, 769–771 (1975)

    Article  Google Scholar 

  11. Das, I., Dennis, J.: Normal-boundary intersection: a new method for generating the Pareto surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8, 631–657 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Potschka, A., Logist, F., Impe, J.F.V., Bock, H.G.: Tracing the Pareto frontier in bi-objective optimization problems by ODE techniques. Num. Algorithms 57(2), 217–233 (2011)

    Article  MATH  Google Scholar 

  13. Bosman, P.A.N.: On gradients and hybrid evolutionary algorithms for real-valued multiobjective optimization. IEEE Trans. Evol. Comput. 16(1), 51–69 (2012)

    Article  Google Scholar 

  14. Schütze, O., Lara, A., Coello, C.A.C.: The directed search method for unconstrained multi-objective optimization problems. In: Proceedings of the EVOLVE—a bridge between probability, set oriented numerics, and evolutionary computation, pp. 1–4 (2011)

  15. Mejia, E., Schütze, O.: A predictor corrector method for the computation of boundary points of a multi-objective optimization problem. In: CCE 2010, pp. 395–399 (2010)

  16. Lara, A., Alvarado, S., Salomon, S., Avigad, G., Coello, C.A.C., Schütze, O.: The gradient free directed search method as local search within multi-objective evolutionary algorithms. In: EVOLVE II, pp. 153–168 (2013)

  17. Pareto, V.: Manual of Political Economy. The MacMillan Press, London (1971). Original edition in French in 1927

    Google Scholar 

  18. Hillermeier, C.: Nonlinear Multiobjective Optimization—A Generalized Homotopy Approach. Birkhäuser, Basel (2001)

    Book  MATH  Google Scholar 

  19. Kuhn, H., Tucker, A.: Nonlinear programming. In: Neumann, J. (ed.) Proceeding of the 2nd Berkeley symposium on mathematical statistics and probability, pp. 481–492 (1951)

  20. Nocedal, J., Wright, S.: Numerical Optimization. Springer Series in Operations Research and Financial Engineering. Springer, New York (2006)

    Google Scholar 

  21. Deuflhard, P., Borneman, F.: Scientific Computing with Ordinary Differential Equations. Texts in Applied Mathematics 42. Springer, New York (2002)

    Book  Google Scholar 

  22. Allgower, E.L., Georg, K.: Numerical Continuation Methods. Springer, New York (1990)

    Book  MATH  Google Scholar 

  23. Harada, K., Sakuma, J., Kobayashi, S., Ono, I.: Uniform sampling of local Pareto-optimal solution curves by Pareto path following and its applications in multi-objective GA. In: GECCO (2007)

  24. Wang, H.: Zigzag search for continuous multiobjective optimization. Inf. J. Comput. 25(4), 654–665 (2013)

    Article  Google Scholar 

  25. Schäffler, S., Schultz, R., Weinzierl, K.: A stochastic method for the solution of unconstrained vector optimization problems. J. Optim. Theory Appl. 114(1), 209–222 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  26. Henderson, M.E.: Multiple parameter continuation: computing implicitly defined k-manifolds, I. J. Bifurc. Chaos 12(3), 451–476 (2003)

    Article  Google Scholar 

  27. Schütze, O., Dell’Aere, A., Dellnitz, M.: On continuation methods for the numerical treatment of multi-objective optimization problems. In: Branke, J. et al. (ed.) Practical Approaches to Multi-objective Optimization, no. 04461 in Dagstuhl Seminar Proceedings (2005)

  28. Boissonnat, J.-D., Ghosh, A.: Triangulating smooth submanifolds with light scaffolding. Math. Comput. Sci. 4(4), 431–461 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Brown, M., Smith, R.E.: Directed multi-objective optimisation. Int. J. Comput. Syst. Signals 6(1), 3–17 (2005)

    Google Scholar 

  30. Köppen, M., Yoshida, K.: Many-objective particle swarm optimization by gradual leader selection. In: ICANNGA 2007, pp. 323–331. Springer, Berlin (2007)

  31. Schütze, O., Laumanns, M., Tantar, E., Coello, C.A.C., Talbi, E.-G.: Convergence of stochastic search algorithms to gap-free Pareto front approximations. In: GECCO-2007, pp. 892–901 (2007)

  32. Ishibuchi, H., Murata, T.: Multi-objective genetic local search algorithm. In: Proceedings of 3rd IEEE International Conference on Evolutionary Computation, Nagoya, Japan, pp. 119–124 (1996)

  33. Domínguez, I.S., Aguirre, A.H., Valdez, S.I.: A new EDA by a gradient-driven density. In: Parallel Problem Solving from Nature—PPSN XIII—13th International Conference, pp. 352–361 (2014)

  34. Alvarado, S.: El punto a punto de las técnicas de búsquedas local para algoritmos de optimización multiobjetivo. MSc Thesis, Cinvestav-IPN (2012)

  35. Deb, K., Thiele, L., Laumanns, M., Zitzler, E.: Scalable test problems for evolutionary multiobjective optimization. In: Abraham, A., Jain, L., Goldberg, R. (eds.) Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, pp. 105–145. Springer, London (2005)

    Chapter  Google Scholar 

  36. Motta, R., Silvana, S.A.M., Lyra, P.: A modified NBI and NC method for the solution of n-multiobjective optimization problems. Struct. Multidiscip. Optim. 46(2), 239–259 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zitzler, E., Deb, K., Thiele, L.: Comparison of multiobjective evolutionary algorithms: empirical results. Evol. Comput. 8(2), 173–195 (2000)

    Article  Google Scholar 

  38. Caponio, A., Neri, F.: Integrating Cross-Dominance Adaptation in Multi-objective Memetic Algorithms. Springer, Berlin (2009)

    Book  Google Scholar 

  39. Lin, J.-Y., Chen, Y.-P.: Analysis on the collaboration between global search and local search in memetic computation. IEEE Trans. Evol. Comput. 15(5), 608–623 (2011)

    Article  Google Scholar 

  40. Knowles, J., Corne, D.: Memetic algorithms for multiobjective optimization: issues, methods and prospects. Recent Advances in Memetic Algorithms, pp. 313–352. Springer, Berlin (2005)

    Chapter  Google Scholar 

  41. Shukla, P.: On gradient based local search methods in unconstrained evolutionary multi-objective mptimization. In: Obayashi, S., et al. (eds.) EMO, pp. 96–110. Springer, Heidelberg (2007)

    Google Scholar 

  42. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P. N., Liu, W., Tiwari, S.: Multi-objective optimisation test instances for the CEC 2009 special session and competition, Working Report CES-887, School of Computer Science and Electrical Engineering, University of Essex, revised on 20/04/2009 (2008)

  43. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: IEEE Congress on Evolutionary Computation, 2009 (CEC’09), pp. 203–208. IEEE (2009)

  44. Schütze, O., Esquivel, X., Lara, A., Coello, C.A.C.: Using the averaged Hausdorff distance as a performance measure in evolutionary multi-objective optimization. IEEE Trans. Evol. Comput. 16(4), 504–522 (2012)

    Article  Google Scholar 

  45. Zitzler, E.: Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. Ph.D. Thesis, ETH Zurich, Switzerland (1999)

Download references

Acknowledgments

The first author acknowledges support from Conacyt Project No. 128554.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Schütze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schütze, O., Martín, A., Lara, A. et al. The directed search method for multi-objective memetic algorithms. Comput Optim Appl 63, 305–332 (2016). https://doi.org/10.1007/s10589-015-9774-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-015-9774-0

Keywords

Navigation