Skip to main content
Log in

On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper, we study a class of generalized monotone variational inequality (GMVI) problems whose operators are not necessarily monotone (e.g., pseudo-monotone). We present non-Euclidean extragradient (N-EG) methods for computing approximate strong solutions of these problems, and demonstrate how their iteration complexities depend on the global Lipschitz or Hölder continuity properties for their operators and the smoothness properties for the distance generating function used in the N-EG algorithms. We also introduce a variant of this algorithm by incorporating a simple line-search procedure to deal with problems with more general continuous operators. Numerical studies are conducted to illustrate the significant advantages of the developed algorithms over the existing ones for solving large-scale GMVI problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslender, A., Teboulle, M.: Interior projection-like methods for monotone variational inequalities. Math. Progr. 104, 39–68 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Auslender, A., Teboulle, M.: Interior gradient and proximal methods for convex and conic optimization. SIAM J. Optim. 16, 697–725 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M., Combettes, P.L.: Bregman monotone optimization algorithms. SIAM J. Control Optim. 42, 596–636 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ben-Tal, A., Nemirovski, A.S.: Lectures on Modern Convex Optimization: Analysis, Algorithms, Engineering Applications. MPS-SIAM Series on Optimization. SIAM, Philadelphia (2000)

    Google Scholar 

  5. Bertsekas, D.: Nonlinear Programming, 2nd edn. Athena Scientific, New York (1999)

    MATH  Google Scholar 

  6. Bregman, L.M.: The relaxation method of finding the common point convex sets and its application to the solution of problems in convex programming. USSR Comput. Math. Phys. 7, 200–217 (1967)

    Article  Google Scholar 

  7. Facchinei, F., Pang, J.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. 1 and 2. Volumes I and II. Comprehensive Study in Mathematics. Springer-Verlag, New York (2003)

    Google Scholar 

  8. Gafni, E.M., Bertsekas, D.P.: Two-metric projection methods for constrained optimization. SIAM J. Control Optim. 22, 936–964 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  9. Harker, P.T., Pang, J.: A damped-Newton method for the linear complementarity problem. Computational solution of nonlinear systems of equations (Fort Collins, CO, 1988). Lectures in Applied Mathematics, vol. 26. American Mathematical Society, Providence (1990)

    Google Scholar 

  10. Harker, P.T., Pang, J.S.: Finite-dimensional variational inequality and complementarity problems: a survey of theory, algorithms, and applications. Math. Progr. B 48, 161–220 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hearn, D.W.: The gap function of a convex program. Oper. Res. Lett. 1, 67–71 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  12. Nedich, A., Koshal, J., Shanbhag, U.V.: Multiuser optimization: distributed algorithms and error analysis. SIAM J. Optim. 21, 1168–1199 (2011)

    Article  MathSciNet  Google Scholar 

  13. Kiwiel, K.C.: Proximal minimization methods with generalized bregman functions. SIAM J. Controal Optim. 35, 1142–1168 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Korpelevich, G.: The extragradient method for finding saddle points and other problems. Eknomika i Matematicheskie Metody 12, 747–756 (1976)

    MATH  Google Scholar 

  15. Lan, G.: An optimal method for stochastic composite optimization. Math. Progr. 133(1), 365–397 (2012)

    Article  MATH  Google Scholar 

  16. Lan, G., Lu, Z., Monteiro, R.D.C.: Primal-dual first-order methods with \({\cal O}(1/\epsilon )\) iteration-complexity for cone programming. Math. Progr. 126, 1–29 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  17. Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order penalty methods for convex programming. Manuscript, School of Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA, June 2008

  18. Lan, G., Monteiro, R.D.C.: Iteration-complexity of first-order augmented lagrangian methods for convex programming. Technical report, Department of Industrial and Systems Engineering, University of Florida, Gainesville, FL, USA, September 2013. Mathematical Programming (Under second-round review)

  19. Monteiro, R.D.C., Svaiter, B.F.: On the complexity of the hybrid proximal extragradient method for the iterates and the ergodic mean. Manuscript, School of ISyE, Georgia Tech, Atlanta, GA, USA, March 2009

  20. Monteiro, R.D.C., Svaiter, B.F.: Complexity of variants of tsengs modified f-b splitting and korpelevich’s methods for hemi-variational inequalities with applications to saddle-point and convex optimization problems. Manuscript, School of ISyE, Georgia Tech, Atlanta, GA, USA, June 2010

  21. Nemirovski, A.S.: Prox-method with rate of convergence \(o(1/t)\) for variational inequalities with lipschitz continuous monotone operators and smooth convex-concave saddle point problems. SIAM J. Optim. 15, 229–251 (2005)

    Article  MathSciNet  Google Scholar 

  22. Nemirovski, A.S., Juditsky, A., Lan, G., Shapiro, A.: Robust stochastic approximation approach to stochastic programming. SIAM J. Optim. 19, 1574–1609 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Nemirovski, A.S., Yudin, D.: Problem Complexity and Method Efficiency in Optimization. Wiley-Interscience Series in Discrete Mathematics, vol. XV. Wiley, Chichester (1983)

    Google Scholar 

  24. Nesterov, Y.E.: Introductory Lectures on Convex Optimization: A Basic Course. Kluwer Academic Publishers, Massachusetts (2004)

    Book  Google Scholar 

  25. Nesterov, Y.E.: Dual extrapolation and its applications to solving variational inequalities and related problems. Math. Progr. 109, 319–344 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  26. Pang, J., Gabriel, S.A.: Ne/sqp: a robust algorithm for the nonlinear complementarity problem. Math. Progr. 60, 295–337 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  27. Sibony, M.: Méthodes itératives pour les équations et inéquations aux dérivées partielles nonlinéares de type monotone. Calcolo 7, 65–183 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  28. Solodov, M.V., Svaiter, B.F.: A hybrid approximate extragradient-proximal point algorithm using the enlargement of a maximal monotone operator. Set Valued Anal. 7(4), 323345 (1999)

    Article  MathSciNet  Google Scholar 

  29. Solodov, M.V., Svaiter, B.F.: A new projection method for variational inequality problems. SIAM J. Control Optim. 37, 765–776 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sun, D.: A new step-size skill for solving a class of nonlinear projection equations. J. Comput. Math. 13, 357–368 (1995)

    MATH  MathSciNet  Google Scholar 

  31. Teboulle, M.: Convergence of proximal-like algorithms. SIAM J. Optim. 7, 1069–1083 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  32. Tseng, P.: A modified forward-backward splitting method for maximal monotone mappings. SIAM J. Control Optim. 38, 431–446 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  33. Watson, L.T.: Solving the nonlinear complementarity problem by a homotopy method. SIAM J. Control Optim. 17, 36–46 (1979)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author of this paper was partially supported by NSF Grants CMMI-1000347 and DMS-1319050, ONR Grant N00014-13-1-0036, and NSF CAREER Award CMMI-1254446.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guanghui Lan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dang, C.D., Lan, G. On the convergence properties of non-Euclidean extragradient methods for variational inequalities with generalized monotone operators. Comput Optim Appl 60, 277–310 (2015). https://doi.org/10.1007/s10589-014-9673-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9673-9

Keywords

Navigation