Skip to main content
Log in

Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

In this paper we focus on numerical analysis of finite element methods with stabilizations for the optimal control of system governed by unsteady Oseen equations. Using continuous equal-order finite elements for both velocities and pressure, two fully discrete schemes are proposed. Convective effects and pressure are stabilized by adding a subgrid scale eddy viscosity term and a pressure stabilized term. Convergence of the approximate solution is proved. A-Priori error estimates are obtained uniformly with Reynolds number, especially the \(L^2\)-error estimates of numerical solution are independent of Reynolds number. The numerical experiments are shown to be consistent with our theoretical analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Alt, W., Mackenroth, U.: Convergence of finite element approximations to state constrained convex parabolic boundary control problem. SICON 27, 718–736 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Falk, F.S.: Approximation of a class of optimal control problems with order of convergence estimates. J. Math. Anal. Appl. 44, 28–47 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  3. French, D.A., King, J.T.: Approximation of an elliptic control problem by the finite element method. Numer. Func. Anal. Optim. 13, 313–328 (1979)

    Google Scholar 

  4. Knowles, G.: Finite element approximation of parabolic time optimal control problems. SIAM J. Control Optim. 20, 414–427 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  5. Geneci, T.: On the approximation of the solution of an optimal control problem governed by an elliptic equation. RAIRO Anal. Numer. 13, 313–328 (1979)

    MathSciNet  Google Scholar 

  6. Sun, T.: Discontinuous Galerkin finite element method with interior penalties for convection diffusion optimal control problem. Int. J. Numer. Anal. Model. 7(1), 87–107 (2010)

    MathSciNet  Google Scholar 

  7. Zhou, Z., Yan, N.: The local discontinuous Galerkin method for optimal control problem Governed by convection diffusion equations. Int. J. Numer. Anal. Model. 7(4), 681–699 (2010)

    MATH  MathSciNet  Google Scholar 

  8. Liu, W., Yan, N.: Adaptive finite element methods for optimal control governed by PDEs. Science Press, Beijing (2008)

    Google Scholar 

  9. Brooks, A.N., Hughes, T.J.R.: Streamline upwind/Petrov–Galerkin formulations for convection dominated flows with particular emphasis on the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  10. Jonson, C., Navert, U., Pitkaranta, J.: Finite element methods for linear hyperbolic problems. Comput. Methods Appl. Mech. Eng. 45, 285–312 (1984)

    Article  Google Scholar 

  11. Jonson, C., Saranen, J.: Streamline diffusion methods for the incompressible Euler and Navier–Stokes equations. Math. Comp. 47(175), 1–18 (1986)

    Article  MathSciNet  Google Scholar 

  12. Handsbo, P., Szepessy, A.: A velocity–pressure streamline diffusion finite element method for the incompressible Navier–Stokes equations. Comput. Methods Appl. Mech. Eng. 84, 175–192 (1990)

    Article  Google Scholar 

  13. Zhou, T., Feng, M.: A least squares Petrov–Galerkin finite element method for the stationary Navier–Stokes equations. Math. Comp. 60(202), 531–543 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  14. Braack, M., Tews, B.: Linear-quadratic optimal control for the Oseen equations with stabilized finite elements. Optim. Calc. Var. 18(4), 987–1004 (2012)

    Google Scholar 

  15. Layton, W.: A connection between subgrid scale eddy viscosity and mixed methods. Appl. Math. Comput. 133, 147–157 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  16. Heitmann, N.: Subgridscale stabilization of time-dependent convection dominated diffusive transport. J. Math. Anal. Appl. 331(1), 38–50 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  17. John, V., Kaya, S.: Finite element error analysis of a variational multiscale method for the Navier–Stokes equations. Adv. Comp. Math. 28, 43–61 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  18. Kaya, S.: Numerical analysis of a vibrational multiscale method for turbulence, Ph.D. Thesis, University of Pittsburgh (2004)

  19. Feng, M., Bai, Y., He, Y., Qin, Y.: A new stabilized subgrid eddy viscosity method based on pressure projection and extrapolated trapezoidal rule for the transient Navier–Stokes equations. J. Comput. Math. 29(4), 415–440 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Becker, R., Braack, M.: A finite element pressure gradient stabilization for the Stokes equations based on local projections. Calcolo 38, 173–199 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Matthies, G., Skrzypacz, P., Tobiska, L.: A unified convergence analysis for local projection stabisations applied to the Oseen problem. Math. Model. Numer. Anal. 41(4), 713–742 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  22. Codina, R.: Stabilized finite element approximation of transient incompressible flows using orthogonal subsscales. Comput. Methods Appl. Mech. Eng. 191, 4295–4321 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Codina, R.: Analysis of a stabilized finite element approximation of the Oseen equations using orthogonal subscales. Appl. Numer. Math. 58, 264–283 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  24. Bochev, P., Dohrmann, C., Gunzburger, M.: Stabilization of low-order mixed finite elements for the Stokes equations. SINUM 44, 82–101 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  25. Burman, E., Fernadez, M.A.: Galerkin finite element methods with symmetric pressure stabilization for the transient stokes equations: stability and convergence analysi. SINUM 47(1), 409–439 (2008)

    Article  Google Scholar 

  26. Chen, G., Feng, M.: A new absolutely stable simplified Galerkin Least-Squares finite element method using nonconforming element for the Stokes problem. Appl. Math. Comput. 219, 5356–5366 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Braack, M.: Optimal control fluid mechanics by finite elements with symmetric stabilization. Appl. Math. Mech. 8, 10945–10946 (2008)

    Google Scholar 

  28. Lions, J.L.: Optimal control of systems governed by partial differential equations. Springer Verlag, Berlin (1971)

    Book  MATH  Google Scholar 

  29. Ciarlet, P.G.: The finite element method for elliptic problems. North-Holland Publishing Company, Amsterdam (1987)

    Google Scholar 

  30. Hecht, F.: New development in freefem++. J. Numer. Math. 20(3–4), 251–265 (2012)

    Google Scholar 

Download references

Acknowledgments

This research is supported by the Natural Science Foundation of China (No. 11271273). The authors would like to thank the editors and referees for their criticism, valuable comments and suggestions which helped to improve this paper. The authors also would like to thank Huanchen Bao, Shuo Zhou, Weidong Wang and Qiao He for their checking of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minfu Feng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, G., Feng, M. Subgrid scale eddy viscosity finite element method on optimal control of system governed by unsteady Oseen equations. Comput Optim Appl 58, 679–705 (2014). https://doi.org/10.1007/s10589-014-9649-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-014-9649-9

Keywords

Mathematical Subject Classification

Navigation