Skip to main content
Log in

Multi Agent Collaborative Search based on Tchebycheff decomposition

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

This paper presents a novel formulation of Multi Agent Collaborative Search, for multi-objective optimization, based on Tchebycheff decomposition. A population of agents combines heuristics that aim at exploring the search space both globally (social moves) and in a neighborhood of each agent (individualistic moves). In this novel formulation the selection process is based on a combination of Tchebycheff scalarization and Pareto dominance. Furthermore, while in the previous implementation, social actions were applied to the whole population of agents and individualistic actions only to an elite subpopulation, in this novel formulation this mechanism is inverted. The novel agent-based algorithm is tested at first on a standard benchmark of difficult problems and then on two specific problems in space trajectory design. Its performance is compared against a number of state-of-the-art multi-objective optimization algorithms. The results demonstrate that this novel agent-based search has better performance with respect to its predecessor in a number of cases and converges better than the other state-of-the-art algorithms with a better spreading of the solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Fig. 2

Similar content being viewed by others

References

  1. Erfani, T., Utyuzhnikov, S.: Directed search domain: a method for even generation of the Pareto frontier in multiobjective optimization. Eng. Optim. 43(5), 467–484 (2011)

    Article  MathSciNet  Google Scholar 

  2. Fliege, J., Drummond, M., Svaiter, B.: Newton’s method for multicriteria optimization. SIAM J. Optim. 20(2), 602–626 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Graña Drummond, L., Svaiter, B.: A steepest descent method for vector optimization. J. Comput. Appl. Math. 175(2), 395–414 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ishibuchi, H., Yoshida, T.: Hybrid evolutionary multi-objective optimization algorithms. In: Soft Computing Systems: Design, Management and Applications, pp. 163–172. IOS Press, Amsterdam (2002)

    Google Scholar 

  5. Knowles, J., Corne, D.: Local search, multiobjective optimization and the Pareto archived evolution strategy. In: Proceedings of Third Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems, Ashikaga Institute of Technology, pp. 209–216 (1999). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.33.6848

    Google Scholar 

  6. Kumar, A., Sharma, D., Deb, K.: A hybrid multi-objective optimization procedure using PCX based NSGA-II and sequential quadratic programming. In: IEEE Congress on Evolutionary Computation (CEC 2007), pp. 3011–3018. IEEE Press, New York (2007)

    Chapter  Google Scholar 

  7. Lara, A., Sanchez, G., Coello Coello, C., Schutze, O.: HCS: a new local search strategy for memetic multiobjective evolutionary algorithms. IEEE Trans. Evol. Comput. 14(1), 112–132 (2010)

    Article  Google Scholar 

  8. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and diversity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282 (2002)

    Article  Google Scholar 

  9. Liu, M., Zou, X., Chen, Y., Wu, Z.: Performance assessment of DMOEA-DD with CEC 2009 MOEA competition test instances. In: IEEE Congress on Evolutionary Computation (CEC’09), pp. 2913–2918. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  10. Maddock, C., Vasile, M.: Design of optimal spacecraft-asteroid formations through a hybrid global optimization approach. Int. J. Intell. Comput. Cybern. 1(2), 239–268 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Minisci, E., Avanzini, G.: Orbit transfer manoeuvres as a test benchmark for comparison metrics of evolutionary algorithms. In: IEEE Congress on Evolutionary Computation, 2009. CEC’09, pp. 350–357. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  12. Rigoni, E., Poles, S.: NBI and MOGA-II, two complementary algorithms for multi-objective optimizations. In: Practical Approaches to Multi-objective Optimization, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2005). http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.89.6798

    Google Scholar 

  13. Sanchez, J., Colombo, C., Vasile, M., Radice, G.: Multi-criteria comparison among several mitigation strategies for dangerous near earth objects. J. Guid. Control Dyn. 32(1), 121–142 (2009)

    Article  Google Scholar 

  14. Schuetze, O., Sanchez, G., Coello Coello, C.: A new memetic strategy for the numerical treatment of multi-objective optimization problems. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation, pp. 705–712. ACM, New York (2008)

    Chapter  Google Scholar 

  15. Schütze, O., Laumanns, M., Tantar, E., Coello, C., Talbi, E.: Computing gap free Pareto front approximations with stochastic search algorithms. Evol. Comput. 18(1), 65–96 (2010)

    Article  Google Scholar 

  16. Sindhya, K., Sinha, A., Deb, K., Miettinen, K.: Local search based evolutionary multi-objective optimization algorithm for constrained and unconstrained problems. In: IEEE Congress on Evolutionary Computation (CEC’09), pp. 2919–2926. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  17. Tseng, L., Chen, C.: Multiple trajectory search for unconstrained/constrained multi-objective optimization. In: IEEE Congress on Evolutionary Computation (CEC’09), pp. 1951–1958. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  18. Vasile, M.: Robust mission design through evidence theory and multiagent collaborative search. Ann. N.Y. Acad. Sci. 1065(1), 152–173 (2005)

    Article  Google Scholar 

  19. Vasile, M., Locatelli, M.: A hybrid multiagent approach for global trajectory optimization. J. Glob. Optim. 44(4), 461–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vasile, M., Zuiani, F.: A hybrid multiobjective optimization algorithm applied to space trajectory optimization. In: IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE Press, New York (2010)

    Chapter  Google Scholar 

  21. Vasile, M., Zuiani, F.: Multi-agent collaborative search: an agent-based memetic multi-objective optimization algorithm applied to space trajectory design. Proc. Inst. Mech. Eng., G J. Aerosp. Eng. 225(11), 1211–1227 (2011)

    Article  Google Scholar 

  22. Vasile, M., Minisci, E., Locatelli, M.: A dynamical system perspective on evolutionary heuristics applied to space trajectory optimization problems. In: IEEE Congress on Evolutionary Computation (CEC’09), pp. 2340–2347. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  23. Vasile, M., Minisci, E., Locatelli, M.: Analysis of some global optimization algorithms for space trajectory design. J. Spacecr. Rockets 47(2), 334–344 (2010)

    Article  Google Scholar 

  24. Vasile, M., Minisci, E., Locatelli, M.: An inflationary differential evolution algorithm for space trajectory optimization. IEEE Trans. Evol. Comput. 15(2), 267–281 (2011)

    Article  Google Scholar 

  25. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  26. Zhang, Q., Suganthan, P.: Final report on CEC’09 MOEA competition. In: IEEE Congress on Evolutionary Computation (CEC’09) (2009)

    Google Scholar 

  27. Zhang, Q., Zhou, A., Zhao, S., Suganthan, P., Liu, W., Tiwari, S.: Multiobjective optimization test instances for the CEC 2009 special session and competition. Technical Report, University of Essex, Colchester, UK and Nanyang Technological University, Singapore, Special Session on Performance Assessment of Multi-Objective Optimization Algorithms (2008)

  28. Zhang, Q., Liu, W., Li, H.: The performance of a new version of MOEA/D on CEC09 unconstrained MOP test instances. In: IEEE Congress on Evolutionary Computation (CEC’09), pp. 203–208. IEEE Press, New York (2009)

    Chapter  Google Scholar 

  29. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C., da Fonseca, V.: Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Zuiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zuiani, F., Vasile, M. Multi Agent Collaborative Search based on Tchebycheff decomposition. Comput Optim Appl 56, 189–208 (2013). https://doi.org/10.1007/s10589-013-9552-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-013-9552-9

Keywords

Navigation