Skip to main content
Log in

Vortex control of instationary channel flows using translation invariant cost functionals

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

The use of translation invariant cost functionals for the reduction of vortices in the context of shape optimization of fluid flow domains is investigated. Analytical expressions for the shape design sensitivity involving different cost functionals are derived. Instationary channel flow problems with a bump and an obstacle as possible control boundaries are taken as test examples. Numerical results are provided in various graphical forms for relatively low Reynolds numbers. Striking differences are found for the optimal shapes corresponding to the different cost functionals, which constitute different quantification of a vortex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Algorithm 1
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Bach, M., Constanda, C., Hsiao, G.C., Sandig, A.M., Werner, P.: Analysis, Numerics and Applications of Differential and Integral Equations. Research Notes in Mathematics Series, vol. 379. Addison–Wesley/Longman, Reading/Harlow (1998)

    MATH  Google Scholar 

  2. Delfour, M.C., Zolésio, J.P.: Shapes and Geometries: Analysis, Differential Calculus, and Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    MATH  Google Scholar 

  3. Evans, L.C.: Partial Differential Equations. American Mathematical Society, Providence (1998)

    MATH  Google Scholar 

  4. Gao, Z., Ma, Y.: Shape gradient of the dissipated energy functional in shape optimization for the viscous incompressible flow. Appl. Numer. Math. 58(11), 1720–1741 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gao, Z., Ma, Y.: Shape optimization in time-dependent Navier-Stokes flows via function space parametrization technique. Comput. Model. Eng. Sci. 66(2), 135–163 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Gunzburger, M.D.: Perspectives in Flow Control and Optimization. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  7. Halanay1, A., Tiba, D.: Shape optimization for stationary Navier-Stokes equations. Control Cybern. 38(4B) (2009)

  8. Haslinger, J., Mäkinen, R.A.E.: Introduction to Shape Optimization: Theory, Approximation, and Computation. Society for Industrial and Applied Mathematics, Philadelphia (2003)

    Book  MATH  Google Scholar 

  9. He, B., Ghattas, O., Antaki, J.F.: Computational strategies for shape optimization of Navier-Stokes flows. Technical report CMU-CML-97-102, Computational Mechanics Lab, Department of Civil and Environmental Engineering, Carnegie Mellon University (1997)

  10. Henrot, A., Privat, Y.: What is the optimal shape of a pipe? Arch. Ration. Mech. Anal. 196(1), 281–302 (2009)

    Article  MathSciNet  Google Scholar 

  11. Heywood, J.G., Rannacher, R., Turek, S.: Artificial boundaries and flux and pressure conditions for the incompressible Navier-Stokes equations. Int. J. Numer. Methods Fluids 22(5), 325–352 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives for a class of Bernoulli problems. J. Math. Anal. Appl. 314(1), 126–149 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ito, K., Kunisch, K., Peichl, G.: Variational approach to shape derivatives. In: ESAIM: Control, Optimisation and Calculus of Variations, vol. 14, pp. 517–539 (2008)

    Google Scholar 

  14. Kasumba, H., Kunisch, K.: On shape sensitivity analysis of the cost functional without shape sensitivity of the state variable. Control Cybern. 40(4), 989–1017 (2011)

    MathSciNet  Google Scholar 

  15. Kasumba, H., Kunisch, K.: Vortex control in channel flows using translational invariant cost functionals. Comput. Optim. Appl. (2011). doi:10.1007/s10589-011-9434-y

    Google Scholar 

  16. Kunisch, K., Vexler, B.: Optimal vortex reduction for instationary flows based on translation invariant cost functionals. SIAM J. Control Optim. 46(4), 1368–1397 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Quarteroni, A., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer, Berlin (1997)

    Google Scholar 

  18. Sokolowski, J., Zolésio, J.P.: Introduction to Shape Optimization. Shape Sensitivity Analysis. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Kunisch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasumba, H., Kunisch, K. Vortex control of instationary channel flows using translation invariant cost functionals. Comput Optim Appl 55, 227–263 (2013). https://doi.org/10.1007/s10589-012-9516-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-012-9516-5

Keywords

Navigation