Skip to main content
Log in

Scenario reduction in stochastic programming with respect to discrepancy distances

  • Published:
Computational Optimization and Applications Aims and scope Submit manuscript

Abstract

Discrete approximations to chance constrained and mixed-integer two-stage stochastic programs require moderately sized scenario sets. The relevant distances of (multivariate) probability distributions for deriving quantitative stability results for such stochastic programs are ℬ-discrepancies, where the class ℬ of Borel sets depends on their structural properties. Hence, the optimal scenario reduction problem for such models is stated with respect to ℬ-discrepancies. In this paper, upper and lower bounds, and some explicit solutions for optimal scenario reduction problems are derived. In addition, we develop heuristic algorithms for determining nearly optimally reduced probability measures, discuss the case of the cell discrepancy (or Kolmogorov metric) in some detail and provide some numerical experience.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P.: Convergence of Probability Measures. Wiley, New York (1968)

    MATH  Google Scholar 

  2. Billingsley, P., Topsøe, F.: Uniformity in weak convergence. Z. Wahrscheinlichkeitstheor. Verw. Geb. 7, 1–16 (1967)

    Article  MATH  Google Scholar 

  3. ILOG CPLEX 10.0, http://www.ilog.com/products/cplex

  4. Dupačová, J., Gröwe-Kuska, N., Römisch, W.: Scenario reduction in stochastic programming: An approach using probability metrics. Math. Program. 95, 493–511 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability—A Guide to the Theory of NP-Completeness. Freeman, New York (1979)

    MATH  Google Scholar 

  6. Heitsch, H., Römisch, W.: Scenario reduction algorithms in stochastic programming. Comput. Optim. Appl. 24, 187–206 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  7. Heitsch, H., Römisch, W.: Scenario tree modelling for multistage stochastic programs. Preprint No. 296, DFG Research Center Matheon “Mathematics for key technologies” (2005, submitted)

  8. Heitsch, H., Römisch, W.: A note on scenario reduction for two-stage stochastic programs. Oper. Res. Lett. (2007, to appear)

  9. Henrion, R., Römisch, W.: Metric regularity and quantitative stability in stochastic programs with probabilistic constraints. Math. Program. 84, 55–88 (1999)

    MATH  MathSciNet  Google Scholar 

  10. Henrion, R., Römisch, W.: Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints. Math. Program. 100, 589–611 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  11. Hlawka, E.: Zur Definition der Diskrepanz. Acta Arith. 18, 233–241 (1971)

    MATH  MathSciNet  Google Scholar 

  12. Hlawka, E., Niederreiter, H.: Diskrepanz in kompakten abelschen Gruppen I. Manuscr. Math. 1, 259–288 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kuipers, L., Niederreiter, H.: Uniform Distribution of Sequences. Wiley, New York (1974)

    MATH  Google Scholar 

  14. Mück, P., Philipp, W.: Distances of probability measures and uniform distribution mod 1. Math. Z. 142, 195–202 (1975)

    Article  MathSciNet  Google Scholar 

  15. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. CBMS-NSF Regional Conference Series in Applied Mathematics. SIAM, Philadelphia (1992)

    MATH  Google Scholar 

  16. Niederreiter, H., Wills, J.M.: Diskrepanz und Distanz von Maßen bezüglich konvexer und Jordanscher Mengen. Math. Z. 144, 125–134 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Prékopa, A.: Stochastic Programming. Kluwer, Dordrecht (1995)

    Google Scholar 

  18. Rachev, S.T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester (1991)

    MATH  Google Scholar 

  19. Rachev, S.T., Römisch, W.: Quantitative stability in stochastic programming: The method of probability metrics. Math. Oper. Res. 27, 792–818 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  20. Römisch, W.: Stability of stochastic programming problems. In: Ruszczyński, A., Shapiro, A. (eds.) Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10, pp. 483–554. Elsevier, Amsterdam (2003)

    Google Scholar 

  21. Römisch, W., Schultz, R.: Stability analysis for stochastic programs. Ann. Oper. Res. 30, 241–266 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Römisch, W., Wakolbinger, A.: Obtaining convergence rates for approximations in stochastic programming. In: Guddat, J., Jongen, H.T., Kummer, B., Nožička, F. (eds.) Parametric Optimization and Related Topics, pp. 327–343. Akademie Verlag, Berlin (1987)

    Google Scholar 

  23. Ruszczyński, A., Shapiro, A. (eds.): In: Stochastic Programming. Handbooks in Operations Research and Management Science, vol. 10. Elsevier, Amsterdam (2003)

    MATH  Google Scholar 

  24. Schultz, R.: Rates of convergence in stochastic programs with complete integer recourse. SIAM J. Optim. 6, 1138–1152 (1996)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René Henrion.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henrion, R., Küchler, C. & Römisch, W. Scenario reduction in stochastic programming with respect to discrepancy distances. Comput Optim Appl 43, 67–93 (2009). https://doi.org/10.1007/s10589-007-9123-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10589-007-9123-z

Keywords

Navigation