Skip to main content

Advertisement

Log in

Adaptive immune genetic algorithm for weapon system portfolio optimization in military big data environment

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Military applications are producing massive amounts of data due to the use of multiple types of sensors on the battlefield. The aim of this paper is to investigate the weapon system portfolio problem with the valuable knowledge extracted from these sensor data. The objective of weapon system portfolio optimization is to determine the appropriate assignment of various weapon units, which maximizes the expected damage of all hostile targets, while satisfying a set of constraints. This paper presents a mixed integer non-linear optimization model for the weapon system portfolio problem. In order to solve this model, an adaptive immune genetic algorithm using crossover and mutation probabilities that are automatically tuned in each generation is proposed. A ground-based air defensive scenario is introduced to illustrate the feasibility and efficiency of our proposed algorithm. In addition, several large-scale instances that are produced by a test-case generator are also considered to demonstrate the scalability of the algorithm. Comparative experiments have shown that our algorithm outperforms its competitors in terms of convergence speed and solution quality, and it is competent for solving weapon system portfolio problems under different scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. James, M., Michael, C., Brad, B., et al.: Big data: the next frontier for innovation, competition, and productivity. McKinsey Global Institute (2011)

  2. Provost, F., Fawcett, T.: Data science and its relationship to big data and data-driven decision making. Big Data 1(1), 51–59 (2013)

    Article  Google Scholar 

  3. McAfee, A., Brynjolfsson, E.: Big data: the management revolution. Harv. Bus. Rev. 90(10), 61–67 (2012)

    Google Scholar 

  4. Song, X., Wu, Y., Ma, Y., Cui, Y., Gong, G.: Military simulation big data: background, state of the art, and challenges. Math. Probl. Eng., pp., 1–20 (2015). Article ID: 298356. doi:10.1155/2015/298356

  5. Wu, W., Guo, S., He, X., Hu, X.: Research on temporal network of combat SoS coordination based on big data. J. Command Control. 1(2), 150–159 (2015)

  6. McGregor, C., Bonnis, B., Stanfield, B., Stanfield, M.: A method for real-time stimulation and response monitoring using big data and its application to tactical training. In: IEEE 28th International Symposium on Computer-Based Medical Systems, pp. 169–170 (2015)

  7. Akhgar, B., Saathoff, G.B., Arabnia, H.R., Hill, R., et al.: Application of Big Data for National Security. Elsevier Butterworth-Heinemann, Oxford (2015)

    Google Scholar 

  8. Kulshrestha, S.: Big data in military information & intelligence. IndraStra Global. doi:10.6084/m9.figshare.2066640, 2(1), 1–9 (2016)

  9. Cha, Y.-H., Bang, J.-Y.: A branch-and-bound algorithm to minimize the makespan in a fire scheduling problem. J. Soc. Korea Ind. Syst. Eng. 38(4), 132–141 (2015)

    Article  Google Scholar 

  10. Sahin, M.A., Leblebicioglu, K.: Approximating the optimal mapping for weapon target assignment by fuzzy reasoning. Inf. Sci. 255, 30–44 (2014)

    Article  MathSciNet  Google Scholar 

  11. Elattar, E.E.: A hybrid genetic algorithm and bacterial foraging approach for dynamic economic dispatch problem. Electr. Power Energy Syst. 69, 18–26 (2015)

    Article  Google Scholar 

  12. Han, H., Ding, Y.S., Hao, K.R., Liang, X.: An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking. Comput. Math. Appl. 62, 2685–2695 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ministry of National Defence of The People’s Republic of China. http://www.mod.gov.cn

  14. Lee, J., Kang, S.-H., Rosenberger, J., Kim, S.B.: A hybrid approach of goal programming for weapon systems selection. Comput. Ind. Eng. 58, 521–527 (2010)

    Article  Google Scholar 

  15. Vie, L.L., Scheier, L.M., Lester, P.B., Ho, T.E.: The U.S. army person-event data environment: a military-civilian big data enterprise. Big Data 3, 1–13 (2015)

    Article  Google Scholar 

  16. Lee, Z.-J., Su, S.-F., Lee, C.-Y.: A genetic algorithm with domain knowledge for weapon-target assignment problems. J. Chin. Inst. Eng. 25(3), 287–295 (2002)

    Article  Google Scholar 

  17. Lee, M.Z.: Constrained weapon-target assignment: enhanced very large scale neighborhood search algorithm. IEEE Trans. Syst. Man Cybern. Part A 40(1), 198–204 (2010)

    Article  Google Scholar 

  18. Bogdanowicz, Z.R.: A new efficient algorithm for optimal assignment of smart weapons to targets. Comput. Math. Appl. 58, 1965–1969 (2009)

    Article  MATH  Google Scholar 

  19. Bogdanowicz, Z.R., Tolano, A., Patel, K., Coleman, N.P.: Optimization of weapon-target pairings based on kill probabilities. IEEE Trans. Cybern. 43(6), 1835–1844 (2013)

    Article  Google Scholar 

  20. Lee, Z.-J., Su, S.-F., Lee, C.Y.: Efficiently solving general weapon-target assignment problem by genetic algorithms with greedy eugenics. IEEE Trans. Syst. Man Cybern. Part B 33(1), 113–120 (2003)

    Article  Google Scholar 

  21. Silven, S.: A neural approach to the assignment algorithm for multiple-target tracking. IEEE J. Ocean. Eng. 17(4), 326–332 (1992)

    Article  Google Scholar 

  22. Chen, J., Xin, B., Peng, Z., Dou, L., Zhang, J.: Evolutionary decision-makings for the dynamic weapon-target assignment problem. Sci. China Ser. F 52(11), 2006–2018 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Yanxia, W., Longjun, Q., Zhi, G., Lifeng, M.: Weapon target assignment problem satisfying expected damage probabilities based on ant colony algorithm. J. Syst. Eng. Electron. 19(5), 939–944 (2008)

    Article  MATH  Google Scholar 

  24. Wang, S., Chen, W., Gu, X.: Solving weapon-target assignment problems based on self-adaptive differential evolution algorithm. Syst. Eng. Electron. 35(10), 2115–2120 (2013)

    Google Scholar 

  25. Feng, G., Yan, M., Tong, F.: A hybrid quantum-based step tuning algorithm for weapon target assignment problem. Tactical Missile Technol. 6, 58–61 (2013)

    Google Scholar 

  26. Fan, C., Xing, Q., Zheng, M., Wang, Z.: Weapon-target allocation optimization algorithm based on IDPSO. Syst. Eng. Electron. 37(2), 336–342 (2015)

    Google Scholar 

  27. Yan, J., Li, X., Liu, L., Zhang, F.: Weapon-target assignment based on Memetic optimization algorithm in beyond-visual-rang cooperative air combat. J. Beijing Univ. Aeronaut. Astronaut. 40(10), 1424–1429 (2014)

    Google Scholar 

  28. Xuan, J., Luo, X., Zhang, G., Lu, J., Xu, Z.: Uncertainty analysis for the keyword system of web events. IEEE Trans. Syst. Man Cybern. 46(6), 829–842 (2016)

    Article  Google Scholar 

  29. Xu, Z., et al.: Semantic based representing and organizing surveillance big data using video structural description technology. J. Syst. Softw. 102, 217–225 (2015)

    Article  Google Scholar 

  30. Xu, Z., Mei, L., Hu, C., Liu, Y.: The big data analytics and applications of the surveillance system using video structured description technology. Clust. Comput. (2016). doi:10.1007/s10586-016-0581-x

  31. Day, R.H.: Allocating weapons to target complexes by means of non-linear programming. Operat. Res. 14, 992–1013 (1966)

    Article  Google Scholar 

  32. Gu, J.J., Zhao, J., Yan, J., Chen, X.: Cooperative weapon-target assignment based on multi-objective discrete particle swarm optimization-gravitational search algorithm in air combat. J. Beijing Univ. Aeronaut. Astronaut. 41(2), 252–258 (2015)

    Google Scholar 

  33. Xin, B., Chen, J., Peng, Z., Dou, L., Zhang, J.: An efficient rule-based constructive heuristic to solve dynamic weapon-target assignment problem. IEEE Trans. Syst. Man Cybern. Part A 41(3), 598–606 (2011)

    Article  Google Scholar 

  34. Ni, M.F., Yu, Z.K., Ma, F., Wu, X.R.: A lagrange relaxation method for solving weapon-target assignment problem. Math. Probl. Eng., pp. 1–10 (2011). Article ID: 873292, doi:10.1155/2011/873292

  35. Xin, B., Chen, J., Zhang, J., Dou, L., Peng, Zhihong: Efficient decision makings for dynamic weapon-target assignment by virtual permutation and Tabu search heuristics. IEEE Trans. Syst. Man Cybern. Part C 40(6), 649–662 (2010)

    Article  Google Scholar 

  36. Liao, G.C.: Integrated isolation niche and immune genetic algorithm for solving bid-based dynamic economic dispatch. Electr. Power Energy Syst. 42, 264–275 (2012)

  37. Diabat, A., Kannan, D., Kaliyan, M., Svetinovic, D.: An optimization model for product returns using genetic algorithms and artificial immune system. Resour. Conserv. Recycl. 74, 156–169 (2013)

    Article  Google Scholar 

  38. Wang, D., Fung, R.Y.K., Ip, W.H.: An immune-genetic algorithm for introduction planning of new products. Comput. Ind. Eng. 56, 902–917 (2009)

    Article  Google Scholar 

  39. Chen, T.C., Hsieh, Y.C.: Using immune-based genetic algorithms for single trader’s periodic marketing problem. Math. Comput. Model. 48, 420–428 (2008)

    Article  MATH  Google Scholar 

  40. Rabiej, M.: Application of immune and genetic algorithm to the identification of a polymer based on its X-ray diffraction curve. J. Appl. Crystallogr. 46, 1136–1144 (2013)

    Article  Google Scholar 

  41. Jiang, D.H., Hua, G.: Research on image enhancement method based on adaptive immune genetic algorithm. J. Comput. Theor. Nanosci. 12, 119–127 (2015)

    Article  Google Scholar 

  42. Arivudainambi, D., Rekha, D.: Broadcast scheduling problem in TDMA Ad Hoc Networks using immune genetic algorithm. Int. J. Comput. Commun. 8(1), 18–29 (2013)

    Article  Google Scholar 

  43. Zhang, L., Du, J., Shushan, Z.: Solution to the time-cost-quality trade-off problem in construction projects based on immune genetic particle swarm optimization. J. Manag. Eng. 30, 163–172 (2014)

    Article  Google Scholar 

  44. Liang, C., Peng, L.: An automated diagnosis system of liver disease using artificial immune and genetic algorithms. J. Med. Syst. 37, 9932–9941 (2013)

    Article  Google Scholar 

  45. Duma, M., Marwala, T., Twala, B., Nelwamondo, F.: Partial imputation of unseen records to improve classification using a hybrid multi-layered artificial immune system and genetic algorithm. Appl. Soft Comput. 13, 4461–4480 (2013)

    Article  Google Scholar 

  46. Mahdavi, I., Movahednejad, M., Adbesh, F.: Designing customer-oriented catalogs in E-CRM using an effective self-adaptive genetic algorithm. Expert Syst. Appl. 38, 631–639 (2011)

    Article  Google Scholar 

  47. Xue, C., Dong, L., Liu, J.: Enterprise information system structure optimization based on time property with improved immune genetic algorithm and binary tree. Comput. Math. Appl. 63, 1155–1168 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  48. Kuo, R.J., Lee, Y.H., Zulvia, F.E., Tien, F.C.: Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm. Appl. Math. Comput. 266, 1013–1026 (2015)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the reviewers and the editor for their constructive comments and suggestions which are very helpful in improving the quality of the paper. This research is financially supported by National Natural Science Foundation of China under Grant Nos. 61074108 & 61374185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shanliang Yang.

Ethics declarations

Conflicts of interest

The author declares that there is no conflict of interests regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Yang, M., Wang, S. et al. Adaptive immune genetic algorithm for weapon system portfolio optimization in military big data environment. Cluster Comput 19, 1359–1372 (2016). https://doi.org/10.1007/s10586-016-0596-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0596-3

Keywords

Navigation