Skip to main content

Advertisement

Log in

Ultra-short-term wind speed prediction based on multi-scale predictability analysis

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

Accurate prediction of ultra-short-term wind speed is important in many applications. Because of the different patterns of wind speed, researchers have indicated that a multi-scale prediction method based on wavelet algorithms could improve forecasting. However, traditional multi-scale methods that directly synthetize results of different-scale components may reduce forecasting accuracy because of error accumulation. In this paper, a multi-scale synthesis strategy that takes into account the predictability of different scales is proposed. As the correlation length of each frequency sub-series is different, prediction models are constructed for each frequency sub-series using different numbers of prediction steps. Finally, based on two wind farms in different regions of China and different basic forecast models, eight experiments are performed using real-world wind speed data. Experimental results show that the proposed multi-scale synthesis method has better performance than traditional multi-scale forecasting methods that use direct synthetizing strategies, indicating its utility in wind engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26

Similar content being viewed by others

References

  1. Daniel, A.R., Chen, A.A.: Stochastic simulation and forecasting of hourly average wind speed sequences in Jamaica. Solar Energy 46(1), 1–11 (1991)

    Article  Google Scholar 

  2. Huang, Z., Chalabi, Z.S.: Use of time-series analysis to model and forecast wind speed. J. Wind Eng. Ind. Aerod. 56(2), 311–322 (1995)

    Article  Google Scholar 

  3. Soman, S.S., Zareipour, H., Malik, O., Mandal, P.A: Review of wind power and wind speed forecasting methods with different time horizons. In: IEEE North American Power Symposium. pp. 1–8 (2010)

  4. Fonte, P.M., Silva, G.X., Quadrado, J.C.: Wind speed prediction using artificial neural networks. WSEAS Trans. Syst. 4(4), 379–384 (2005)

    Google Scholar 

  5. Lei, M., Shiyan, L., Chuanwen, J., Hongling, L., Yan, Z.: A review on the forecasting of wind speed and generated power. Renew. Sustain. Energy Rev. 13(4), 915–920 (2009)

    Article  Google Scholar 

  6. Hu, Q., Su, P., Yu, D., Liu, J.: Pattern-based wind speed prediction based on generalized principal component analysis. IEEE Trans. Sustain. Energy 5(3), 866–874 (2014)

    Article  Google Scholar 

  7. Osório, G.J., Matias, J.C.O., Catalão, J.P.S.: Short-term wind power forecasting using adaptive neuro-fuzzy inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual information. Renew. Energy 75, 301–307 (2015)

    Article  Google Scholar 

  8. Ummels, B.C., Gibescu, M., Pelgrum, E., Kling, W.L.: Impacts of wind power on thermal generation unit commitment and dispatch. IEEE Trans. Energy Convers. 22(1), 44–51 (2007)

    Article  Google Scholar 

  9. Wu, B., et al.: Wind power prediction system for wind farm based on auto regressive statistical model and physical model. J. Renew. Sustain. Energy 6.1, 013101 (2014)

    Article  Google Scholar 

  10. Kuik, G.V., Ummels, B., Hendriks, R.: Sustainable Energy Technologies. Springer, Amsterdam (2007)

    Google Scholar 

  11. Kusiak, A., Zheng, H., Song, Z.: Wind farm power prediction: a data-mining approach. Wind Energy 12(3), 275–293 (2009)

    Article  Google Scholar 

  12. Golding, B.W.: The meteorological office mesoscale model. Meteorol. Mag. 119(1414), 81–96 (1990)

    Google Scholar 

  13. Machenhauer, B. (ed).: HIRLAM final report. Danish Meteorological Institute (1988)

  14. Pielke, R.A., et al.: A comprehensive meteorological modeling system—RAMS. Meteorol. Atmos. Phys. 49(1–4), 69–91 (1992)

    Article  MathSciNet  Google Scholar 

  15. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Wang, W., Powers, J.G.: A description of the advanced research WRF version 2. NCAR/TN-468 (2005)

  16. Kariniotakis, G.N., Stavrakakis, G.S., Nogaret, E.F.: Wind power forecasting using advanced neural networks models. IEEE Trans. Energy Convers. 11(4), 762–767 (1996)

    Article  Google Scholar 

  17. Kim, D.H., Gee, N.L., Osoon, K.: Wind power prediction at southwest coast of Korea from measured wind data. J. Renew. Sustain. Energy 6.6, 063101 (2014)

    Article  Google Scholar 

  18. Mohandes, M.: Support vector machines for short-term electrical load forecasting. Int. J. Energy Res. 26(4), 335–345 (2002)

    Article  Google Scholar 

  19. Thordarson, F.Ő.: Conditional weighted combination of wind power forecasts. Wind Energy 13(8), 751–763 (2011)

    Article  MathSciNet  Google Scholar 

  20. De Giorgi, M.G.: Error analysis of short term wind power prediction models. Appl. Energy 88(4), 1298–1311 (2011)

    Article  Google Scholar 

  21. Krishnamurti, T.N., et al.: Improved weather and seasonal climate forecasts from multimodel superensemble. Science 285(5433), 1548–1550 (1999)

    Article  Google Scholar 

  22. Gneiting, T., Raftery, A.E.: Weather forecasting with ensemble methods. Science 310(5746), 248–249 (2005)

    Article  Google Scholar 

  23. Katsigiannis, Y.A., Tsikalakis, A.G., Georgilakis, P.S., Hatziargyriou, N.D.: Improved Wind Power Forecasting Using a Combined Neuro-fuzzy and Artificial Neural Network Model, pp. 105–115. Springer, Heidelberg (2006)

    Google Scholar 

  24. Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: An artificial neural network approach for short-term wind power forecasting in Portugal. In Proc. IEEE 15th Int. Conf. Intell. Syst. Appl. Power Syst., 2009, pp. 1–5

  25. Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Hybrid intelligent approach for short-term wind power forecasting in Portugal. IET Renew. Power Gener. 5(3), 251–257 (2011)

    Article  Google Scholar 

  26. Moonen, P., Dorer, V., Carmeliet, J.: Effect of flow unsteadiness on the mean wind flow pattern in an idealized urban environment[J]. J. Wind Eng. Ind. Aerodyn. 104, 389–396 (2012)

    Article  Google Scholar 

  27. Hu, Q., Zhang, R., Zhou, Y.: Transfer learning for short-term wind speed prediction with deep neural networks. Renew. Energy 85, 83–95 (2016)

    Article  Google Scholar 

  28. Reisyan, G.D.: Brain Science and Emotion Research. Neuro-Organizational Culture, pp. 77–166. Springer, Berlin (2016)

    Book  Google Scholar 

  29. Liu, H., et al.: A hybrid statistical method to predict wind speed and wind power. Renew. Energy 35(8), 1857–1861 (2010)

    Article  Google Scholar 

  30. Catalão, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Short-term wind power forecasting in Portugal by neural networks and wavelet transform. Renew. Energy 36(4), 1245–1251 (2011)

    Article  Google Scholar 

  31. Catalao, J.P.S., Pousinho, H.M.I., Mendes, V.M.F.: Hybrid intelligent approach for short-term wind power forecasting in Portugal. IET Renew. Power Gener. 5(3), 251–257 (2011)

    Article  Google Scholar 

  32. Wang, J.-Z., Wang, Y., Jiang, P.: The study and application of a novel hybrid forecasting model—a case study of wind speed forecasting in China. Appl. Energy 143, 472–488 (2015)

    Article  Google Scholar 

  33. Wang, L., Dong, L., Hao, Y., Liao, X.: Wind power prediction using wavelet transform and chaotic characteristics. In: Proc. IEEE World Non-Grid-Connected Wind Power Energy Conf., 2009, pp. 1–5

  34. Xu, Z. et al.: Crowdsourcing based description of urban emergency events using social media big data. IEEE Trans. Cloud Comput. doi:10.1109/TCC.2016.2517638

  35. Luo, X., Xu, Z., Yu, J., Chen, X.: Building association link network for semantic link on web resources. IEEE Trans. Autom. Sci. Eng. 8(3), 482–494 (2011)

    Article  Google Scholar 

  36. Chen, N., Zheng Q., Xiaofeng M.: Multistep wind speed forecasting based on wavelet and gaussian processes. Math. Probl. Eng. (2013)

  37. Liu, H., et al.: A hybrid model for wind speed prediction using empirical mode decomposition and artificial neural networks. Renew. Energy 48, 545–556 (2012)

    Article  Google Scholar 

  38. Zhang, G., Yonggang, W., Liu, Y.: An advanced wind speed multi-step ahead forecasting approach with characteristic component analysis. J. Renew. Sustain. Energy 6(5), 053139 (2014)

    Article  Google Scholar 

  39. Guo, Z., Zhao, W., Lu, H., et al.: Multi-step forecasting for wind speed using a modified EMD-based artificial neural network model. Renew. Energy 37(1), 241–249 (2012)

    Article  Google Scholar 

  40. Liu, H., Tian, H-q, Li, Y-f: An EMD-recursive ARIMA method to predict wind speed for railway strong wind warning system. J. Wind Eng. Ind. Aerodyn. 141, 27–38 (2015)

    Article  Google Scholar 

  41. Ren, Y., Suganthan, P.N., Narasimalu, S.: A comparative study of empirical mode decomposition-based short-term wind speed forecasting methods. IEEE Trans. Sustain. Energy 6.1, 236–244 (2015)

  42. Xu, Z., et al.: Semantic based representing and organizing surveillance big data using video structural description technology. J. Syst. Softw. 102, 217–225 (2015)

    Article  Google Scholar 

  43. Wang, J., Zhang, W., Li, Y., et al.: Forecasting wind speed using empirical mode decomposition and Elman neural network. Appl. Soft Comput. 23, 452–459 (2014)

    Article  Google Scholar 

  44. Ren, Y., Suganthan, P., Narasimalu S.: A novel empirical mode decomposition with support vector regression for wind speed forecasting. (2014)

  45. Mix, D.F., Kraig, J.O.: Elements of Wavelets for Engineers and Scientists. Wiley, New York (2003)

    Book  MATH  Google Scholar 

  46. Mallat, S.G.: A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Machine Intell. 11(7), 674–693 (1989)

    Article  MATH  Google Scholar 

  47. Deng, Y., Hu, Y., Meng, X., Zhu, Y., Zhang, Z., Han, J.: Predictively booting nodes to minimize performance degradation of a power-aware web cluster. Clust. Comput. 17(4), 1309–1322 (2014)

    Article  Google Scholar 

  48. Zou, Q.: Reexamining anomaly temporal behaviors in SPEC CPU workloads: self-similar or not? Cluster Comput. 17(4), 1427–1441 (2014)

    Article  Google Scholar 

  49. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Machine Intell. 27(8), 1226–1238 (2005)

    Article  Google Scholar 

  50. Vapnik, V.N., Vlamimir, V.: Statistical Learning Theory, vol. 1. Wiley, New York (1998)

    Google Scholar 

  51. Monge, D.A., Holec, M., Železný, F., Garino, C.G.: Ensemble learning of runtime prediction models for gene-expression analysis workflows. Cluster Comput. 18(4), 1317–1329 (2015)

    Article  Google Scholar 

  52. Suykons, J.A.K., et al.: Least Squares Support Vector Machines. World Scientific, London (2002)

    Book  Google Scholar 

  53. Yang, B., Xu, J., Yang, J., Li, M.: Localization algorithm in wireless sensor networks based on semi-supervised manifold learning and its application. Cluster Comput. 13(4), 435–446 (2010)

    Article  Google Scholar 

  54. Suykens, J.A.K., De Brabanter, J., Lukas, L., et al.: Weighted least squares support vector machines: robustness and sparse approximation [J]. Neurocomputing 48(1), 85–105 (2002)

    Article  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by National Program on Key Basic Research Project (973 Program) of China under Grant 2012CB215201.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daren Yu.

Ethics declarations

Conflicts of interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wan, J., Ren, G., Liu, J. et al. Ultra-short-term wind speed prediction based on multi-scale predictability analysis. Cluster Comput 19, 741–755 (2016). https://doi.org/10.1007/s10586-016-0554-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-016-0554-0

Keywords

Navigation