Skip to main content
Log in

Auto-localized multimedia platform based on a modular Cyber Physical System aligned in a two-dimensional grid

  • Published:
Cluster Computing Aims and scope Submit manuscript

Abstract

In this research, a smart mechanism to automatically configure the relative locations of clustered intelligent nodes arranged in a grid pattern is introduced. If an intelligent node knows the relative location of more than one neighboring node, its location can be recognized. By studying the feature of the grid structure and the short-range infrared signal communication method between the adjacent nodes, the location of an intelligent node and the location map construction of the whole system are configured automatically at each node. The algorithms in this study are tested by a cross-module image or video display task with modularized and reconfigurable digital surface, a modular Cyber-Physical System platform which has stacked ‘smart modules’ each of which has smart sensing and multimedia node with infra-red transceivers at four corners. Exemplary applications demonstrate the feasibility of the system in its scalability and practicality as well as performance by being applied to various spatially reconfigurable multimedia platforms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Hightower, J., Borriello, G.: Location systems for ubiquitous computing. Computer 34(8), 57–66 (2001)

    Article  Google Scholar 

  2. Ni, T., Schmidt, G.S., Staadt, O.G., Livingston, M.A., Ball, R., May, R: A survey of large high-resolution display technologies, techniques, and applications. In: IEEE Virtual Reality Conference, pp. 223–236 (2006)

  3. Harish, P., Narayanan, P.J.: Garuda: a scalable tiled display wall using commodity PCs. IEEE Trans. Vis. Comput. Graph. 13(5), 864–877 (2007)

    Article  Google Scholar 

  4. Jeong, B., Renambot, L., Jagodic, R., Singh, R., Aguilera, J., Johnson, A., Leigh, J: High-performance dynamic graphics streaming for scalable adaptive graphics environment. In SC 2006 Conference, Proceedings of the ACM/IEEE, pp. 24–24. IEEE, New York (2006)

  5. Chang, S., Chung, J., Seo, K., Suh, D.: Modularized multimedia framework for multi-modal and multi-functional interactions. Multimed. Tools Appl. 56(2), 331–349 (2012)

    Article  Google Scholar 

  6. Wikipedia. http://en.wikipedia.org/wiki/Interactive_media

  7. Firstbuild. http://www.sticboy.com/projects/firstbuild

  8. Tsumiki. http://ppp.aircord.co.jp/en/work/tsumiki/index.html

  9. Ullmer, B., Ishii, H., Glas, D: mediaBlocks: physical containers, transports, and controls for online media. In: Proceedings of the 25th Annual Conference on Computer Graphics and Interactive Techniques, pp. 379–386. ACM, New York (1998)

  10. Pla i Conesa, P.: Display blocks: cubic displays for multi-perspective visualizations. Doctoral dissertation, Massachusetts Institute of Technology (2012)

  11. Bulusu, N., Heidemann, J., Estrin, D.: GPS-less low-cost outdoor localization for very small devices. IEEE Pers. Commun. 7(5), 28–34 (2000)

    Article  Google Scholar 

  12. Subrata, R., Zomaya, A.Y.: Dynamic location management for mobile computing. Telecommun. Syst. 22(1–4), 169–187 (2003)

    Article  Google Scholar 

  13. Qi, H., Iyengar, S., Chakrabarty, K.: Multiresolution data integration using mobile agents in distributed sensor networks. IEEE Trans. Syst. Man Cybern. C 31(3), 383–391 (2001)

    Article  Google Scholar 

  14. Han, G., Xu, H., Duong, T.Q., Jiang, J., Hara, T.: Localization algorithms of wireless sensor networks: a survey. Telecommun. Syst. 20, 1–18 (2011)

    Google Scholar 

  15. Zhao, J., Zhao, Q., Li, Z., Liu, Y.: An improved weighted centroid localization algorithm based on difference of estimated distances for wireless sensor networks. Telecommun. Syst. 53, 25–31 (2013)

    Article  Google Scholar 

  16. Iyengar, S.S., Prasad, L., Min, H.: Advances in Distributed Sensor Technology. Prentice-Hall, Englewood Cliffs (1995)

    Google Scholar 

  17. Das, S., Liu, H., Nayak, A., Stojmenović, I.: A localized algorithm for bi-connectivity of connected mobile robots. Telecommun. Syst. 40(3–4), 129–140 (2009)

    Article  Google Scholar 

  18. Batalin, M.A., Sukhatme, G.S.: Coverage, exploration and deployment by a mobile robot and communication network. Telecommun. Syst. 26(2–4), 181–196 (2004)

  19. Chakrabarty, K., Iyengar, S.S., Qi, H., Cho, E.: Grid coverage for surveillance and target location in distributed sensor networks. IEEE Trans. Comput. 51(12), 1448–1453 (2002)

    Article  MathSciNet  Google Scholar 

  20. Chean, M., Fortes, J.A.B.: A taxonomy of reconfiguration techniques for fault-tolerant processor arrays. Computer 23(1), 55–69 (1990)

    Article  Google Scholar 

  21. Thomas, F., Ros, L.: Revisiting trilateration for robot localization. IEEE Trans. Robot. 21(1), 93–101 (2005)

    Article  MathSciNet  Google Scholar 

  22. Fang, B.T.: Trilateration and extension to global positioning system navigation. J. Guid. Control Dyn. 9(6), 715–717 (1986)

    Article  Google Scholar 

  23. Priyantha, N.B., Chakraborty, A., Balakrishnan, H: The cricket location-support system. In: Proceedings of the 6th Annual International Conference on Mobile Computing and Networking, pp. 32–43. ACM, New York (2000)

  24. Want, R., Hopper, A., Falcao, V., Gibbons, J.: The active badge location system. ACM Trans. Inf. Syst. (TOIS) 10(1), 91–102 (1992)

    Article  Google Scholar 

  25. Hightower, J., Want, R., Borriello, G.: SpotON: an indoor 3D location sensing technology based on RF signal strength. UW CSE 00-02-02, Department of Computer Science and Engineering, University of Washington, Seattle, p. 1 (2000)

  26. Li, S: Combining topological and directional information for spatial reasoning. In: IJCAI, pp. 435–440 (2007)

  27. Richardson, B., Leydon, K., Fernstrom, M., Paradiso, J.A: Z-Tiles: building blocks for modular, pressure-sensing floorspaces. In: CHI’04 Extended Abstracts on Human Factors in Computing Systems, pp. 1529–1532. ACM, New York (2004)

  28. Loomans, M.J., Koeleman, C.J: Real-time scalable video codec implementation for surveillance. In: IEEE International Conference on Multimedia and Expo, 2009. ICME 2009, pp. 1130–1133. IEEE, NewYork (2009)

  29. Xiph.org.: VQEG test sequences. http://media.xiph.org

  30. Reichel, J., Schwarz, H., Wien, M: Joint scalable video model 11 (JSVM 11). Joint Video Team, Geneva (2007)

  31. Fallon, H., de Lattre, A., Bilien, J., Daoud, A., Gautier, M., Stenac, C.: VLC user guide. VideoLAN Project (2002)

Download references

Acknowledgments

This research was supported by Basic Science Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Education, Science and Technology (NRF-2013R1A1A2013740) and Prof. Jungdae Kim was also financially supported by Korea Nazarene University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsul Kim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Suh, D., Jeon, K., Chang, S. et al. Auto-localized multimedia platform based on a modular Cyber Physical System aligned in a two-dimensional grid. Cluster Comput 18, 1449–1464 (2015). https://doi.org/10.1007/s10586-015-0479-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10586-015-0479-z

Keywords

Navigation