Skip to main content
Log in

Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The canonical Wnt/β-catenin pathway is involved in diverse cancer development mechanisms, such as proliferation, migration, and invasion. However, its role in head and neck squamous cell carcinoma (HNSCC) remains largely unknown. We investigated whether the canonical Wnt/β-catenin signaling pathway acts as a controller of invasion and lymph node metastasis (LNM) in HNSCC. Loss of function experiments against the canonical Wnt/β-catenin pathway were conducted to evaluate its invasive and metastatic role in HNSCC cells. Slug was evaluated as a downstream protein in canonical Wnt/β-catenin-mediated invasion. In addition, canonical Wnt/β-catenin and Slug expression levels were examined in 119 HNSCC tissue samples to study the relevance of these proteins in LNM and prognosis of patients post-treatment. In vitro suppression of β-catenin expression led to decreased migration and invasion of HNSCC cells. Using an in vivo mouse orthotopic LNM model, a decrease in LNM was observed with mitigated β-catenin expression. Slug expression upregulation mediates invasion and LNM by the canonical Wnt/β-catenin pathway. Simultaneous expression of β-catenin and Slug is the major predictive factor of LNM and survival rate in patients with HNSCC. In conclusion, the canonical Wnt/β-catenin/Slug signaling axis significantly contributes to cancer cell invasion and LNM. Its blockade may be a treatment strategy for LNM and tumor recurrence in HNSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Rezende TM, de Souza FM, Franco OL (2010) Head and neck cancer: proteomic advances and biomarker achievements. Cancer 116(21):4914–4925. https://doi.org/10.1002/cncr.25245

    Article  PubMed  Google Scholar 

  2. Belcher R, Hayes K, Fedewa S et al (2014) Current treatment of head and neck squamous cell cancer. J Surg Oncol 110(5):551–574. https://doi.org/10.1002/jso.23724

    Article  PubMed  Google Scholar 

  3. Chen ZG (2007) Exploration of metastasis-related proteins as biomarkers and therapeutic targets in the treatment of head and neck cancer. Curr Cancer Drug Targets 7(7):613–622. https://doi.org/10.2174/156800907782418301

    Article  CAS  PubMed  Google Scholar 

  4. Howell GM, Grandis JR (2005) Molecular mediators of metastasis in head and neck squamous cell carcinoma. Head Neck 27(8):710–717. https://doi.org/10.1002/hed.20222

    Article  PubMed  Google Scholar 

  5. Clevers H (2006) Wnt/β-catenin signaling in development and disease. Cell 127(3):469–480. https://doi.org/10.1016/j.cell.2006.10.018

    Article  CAS  PubMed  Google Scholar 

  6. Krishnamurthy N, Kurzrock R (2018) Targeting the Wnt/beta-catenin pathway in cancer: update on effectors and inhibitors. Cancer Treat Rev 62(1):50–60. https://doi.org/10.1016/j.ctrv.2017.11.002

    Article  CAS  PubMed  Google Scholar 

  7. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398. https://doi.org/10.1038/nrc2389

    Article  CAS  PubMed  Google Scholar 

  8. Lee SH, Koo BS, Kim JM et al (2014) Wnt/β-catenin signalling maintains self-renewal and tumourigenicity of head and neck squamous cell carcinoma stem-like cells by activating. J Pathol 234(1):99–107. https://doi.org/10.1002/path.4383

    Article  CAS  PubMed  Google Scholar 

  9. Wei W, Hu H, Tan H et al (2012) Relationship of CD44+CD24-/low breast cancer stem cells and axillary lymph node metastasis. J Transl Med. https://doi.org/10.1186/1479-5876-10-S1-S6

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Sang A, Zhu M et al (2016) Tissue factor induces VEGF expression via activation of the Wnt/β-catenin signaling pathway in ARPE-19 cells. Mol Vis 22(7):886–897

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Kalluri R, Weinberg RA (2009) The basics of epithelial-mesenchymal transition. J Clin Invest 119(6):1420–1428. https://doi.org/10.1172/JCI39104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Anastas JN, Moon RT (2013) WNT signalling pathways as therapeutic targets in cancer. Nat Rev Cancer 13(1):11–26. https://doi.org/10.1038/nrc3419

    Article  CAS  PubMed  Google Scholar 

  13. Veeman MT, Axelrod JD, Moon RT (2003) A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 5(3):367–377. https://doi.org/10.1016/s1534-5807(03)00266-1

    Article  CAS  PubMed  Google Scholar 

  14. Holland JD, Klaus A, Garratt AN et al (2013) Wnt signaling in stem and cancer stem cells. Curr Opin Cell Biol 25(2):254–264. https://doi.org/10.1016/j.ceb.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  15. Bo H, Zhang S, Gao L et al (2013) Upregulation of Wnt5a promotes epithelial-to-mesenchymal transition and metastasis of pancreatic cancer cells. BMC Cancer 13:496. https://doi.org/10.1186/1471-2407-13-496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. De P, Carlson JH, Wu H et al (2016) Wnt-beta-catenin pathway signals metastasis-associated tumor cell phenotypes in triple negative breast cancers. Oncotarget 7(28):43124–43149. https://doi.org/10.18632/oncotarget.8988

    Article  PubMed  PubMed Central  Google Scholar 

  17. Li Q, Ye L, Zhang X et al (2017) FZD8, a target of p53, promotes bone metastasis in prostate cancer by activating canonical Wnt/β-catenin signaling. Cancer Lett 402(28):166–176. https://doi.org/10.1016/j.canlet.2017.05.029

    Article  CAS  PubMed  Google Scholar 

  18. Kahlert UD, Maciaczyk D, Doostkam S et al (2012) Activation of canonical WNT/β-catenin signaling enhances in vitro motility of glioblastoma cells by activation of ZEB1 and other activators of epithelial-to-mesenchymal transition. Cancer Lett 325(1):42–53. https://doi.org/10.1016/j.canlet.2012.05.024

    Article  CAS  PubMed  Google Scholar 

  19. Yang F, Zeng Q, Yu G et al (2006) Wnt/beta-catenin signaling inhibits death receptor-mediated apoptosis and promotes invasive growth of HNSCC. Cell Signal 18(5):679–687. https://doi.org/10.1016/j.cellsig.2005.06.015

    Article  CAS  PubMed  Google Scholar 

  20. Iwai S, Yonekawa A, Harada C et al (2010) Involvement of the Wnt-β-catenin pathway in invasion and migration of oral squamous carcinoma cells. Int J Oncol 37(5):1095–1103. https://doi.org/10.3892/ijo_00000761

    Article  CAS  PubMed  Google Scholar 

  21. Layland MK, Sessions DG, Lenox J (2005) The influence of lymph node metastasis in the treatment of squamous cell carcinoma of the oral cavity, oropharynx, larynx, and hypopharynx: N0 versus N+. Laryngoscope 115(4):629–639. https://doi.org/10.1097/01.mlg.0000161338.54515.b1

    Article  PubMed  Google Scholar 

  22. Creighton CJ, Chang JC, Rosen JM (2010) Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 15(2):253–260. https://doi.org/10.1007/s10911-010-9173-1

    Article  PubMed  Google Scholar 

  23. Zhang J, Cai H, Sun L et al (2018) LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res 37(1):225. https://doi.org/10.1186/s13046-018-0864-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Iwatsuki M, Mimori K, Yokobori T et al (2010) Epithelial-mesenchymal transition in cancer development and its clinical significance. Cancer Sci 101(2):293–299. https://doi.org/10.1111/j.1349-7006.2009.01419.x

    Article  CAS  PubMed  Google Scholar 

  25. Ghahhari NM, Babashah S (2015) Interplay between microRNAs and WNT/β-catenin signalling pathway regulates epithelial-mesenchymal transition in cancer. Eur J Cancer 51(12):1638–1649. https://doi.org/10.1016/j.ejca.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  26. Zhao JH, Luo Y, Jiang YG et al (2011) Knockdown of β-Catenin through shRNA cause a reversal of EMT and metastatic phenotypes induced by HIF-1α. Cancer Invest 29(6):377–382. https://doi.org/10.3109/07357907.2010.512595

    Article  CAS  PubMed  Google Scholar 

  27. Chung MK, Jung YH, Lee JK et al (2018) CD271 Confers an invasive and metastatic phenotype of head and neck squamous cell carcinoma through the upregulation of slug. Clin Cancer Res 24(3):674–683. https://doi.org/10.1158/1078-0432.CCR-17-0866

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by Konkuk University Hospital Grant (2019).

Author information

Authors and Affiliations

Authors

Contributions

JHM, contributed to design, data acquisition, analysis, and interpretation, drafted the manuscript, critically revised the manuscript; SHL, contributed to data acquisition, analysis, and interpretation, drafted the manuscript; YCL, contributed to design, data analysis, and interpretation, drafted the manuscript, critically revised the manuscript. All authors gave final approval and agree to be accountable for all aspects of the work.

Corresponding author

Correspondence to Young Chang Lim.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 22 kb)

Supplementary file2 (DOC 48 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, J.H., Lee, S.H. & Lim, Y.C. Wnt/β-catenin/Slug pathway contributes to tumor invasion and lymph node metastasis in head and neck squamous cell carcinoma. Clin Exp Metastasis 38, 163–174 (2021). https://doi.org/10.1007/s10585-021-10081-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-021-10081-3

Keywords

Navigation