Skip to main content

Advertisement

Log in

Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases

Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

ECM1 overexpression is an independent predictor of poor prognosis in primary breast carcinomas, however the mechanisms by which ECM1 affects tumor progression have not been completely elucidated. ECM1 was silenced in the triple-negative breast cancer cell lines Hs578T and MDAMB231 using siRNA and the cells were evaluated for changes in morphology, migration, invasion and adhesion. Actin cytoskeleton alterations were evaluated by fluorescent staining and levels of activated Rho GTPases by pull down assays. ECM1 downregulation led to significantly diminished cell migration (p = 0.0005 for Hs578T and p = 0.02 for MDAMB231) and cell adhesion (p < 0.001 for Hs578T and p = 0.01 for MDAMB231). Cell invasion (matrigel) was reduced only in the Hs578T cells (p < 0.01). Silencing decreased the expression of the prometastatic molecules S100A4 and TGFβR2 in both cell lines and CD44 in Hs578T cells. ECM1–silenced cells also exhibited alterations in cell shape and showed bundles of F-actin across the cell (stress fibers) whereas NT-siRNA treated cells showed peripheral membrane ruffling. Downregulation of ECM1 was also associated with an increased F/G actin ratio, when compared to the cells transfected with NT siRNA (p < 0.001 for Hs578T and p < 0.00035 for MDAMB231) and a concomitant decline of activated Rho A in the Hs578T cells. Re-expression of S100A4 in ECM1-silenced cells rescued the phenotype in the Hs578T cells but not the MDAMB231 cells. We conclude that ECM1 is a key player in the metastatic process and regulates the actin cytoskeletal architecture of aggressive breast cancer cells at least in part via alterations in S100A4 and Rho A.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Wang L, Yu J, Ni J, Xu XM, Wang J, Ning H, Pei XF, Chen J, Yang S, Underhill CB et al (2003) Extracellular matrix protein 1 (ECM1) is over-expressed in malignant epithelial tumors. Cancer Lett 200(1):57–67

    Article  CAS  PubMed  Google Scholar 

  2. Kebebew E, Peng M, Reiff E, Duh QY, Clark OH, McMillan A (2005) ECM1 and TMPRSS4 are diagnostic markers of malignant thyroid neoplasms and improve the accuracy of fine needle aspiration biopsy. Ann Surg 242(3):353–361

    PubMed  PubMed Central  Google Scholar 

  3. Lal G, Padmanabha L, Nicholson R, Smith BJ, Zhang L, Howe JR, Robinson RA, O’Dorisio MS (2008) ECM1 expression in thyroid tumors-A comparison of real-time RT-PCR and IHC. J Surg Res 149(1):62–68

    Article  CAS  PubMed  Google Scholar 

  4. Han Z, Lin GJ, Chi FL, Wang SY, Huang JM, Liu HJ, Zhang LR (2008) The relationship between the extracellular matrix and the angiogenesis and metastasis of laryngeal carcinoma. ORL J Otorhinolaryngol Relat Spec 70(6):352–358

    Article  CAS  PubMed  Google Scholar 

  5. Chen H, Jia WD, Li JS, Wang W, Xu GL, Ma JL, Ren WH, Ge YS, Yu JH, Liu WB et al (2011) Extracellular matrix protein 1, a novel prognostic factor, is associated with metastatic potential of hepatocellular carcinoma. Med Oncol 28(Suppl 1):S318–325

    Article  PubMed  Google Scholar 

  6. Xiong GP, Zhang JX, Gu SP, Wu YB, Liu JF (2012) Overexpression of ECM1 contributes to migration and invasion in cholangiocarcinoma cell. Neoplasma 59(4):409–415

    Article  CAS  PubMed  Google Scholar 

  7. Han Z, Ni J, Smits P, Underhill CB, Xie B, Chen Y, Liu N, Tylzanowski P, Parmelee D, Feng P et al (2001) Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J 15(6):988–994

    Article  CAS  PubMed  Google Scholar 

  8. Wu QW, She HQ, Liang J, Huang YF, Yang QM, Yang QL, Zhang ZM (2012) Expression and clinical significance of extracellular matrix protein 1 and vascular endothelial growth factor-C in lymphatic metastasis of human breast cancer. BMC Cancer 12:47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Wu Q, Li X, Yang H, Lu C, You J, Zhang Z (2014) Extracellular matrix protein 1 is correlated to carcinogenesis and lymphatic metastasis of human gastric cancer. World J Surg Oncol 12:132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meng XY, Liu J, Lv F, Liu MQ, Wan JM (2015) Study on the correlation between extracellular matrix protein-1 and the growth, metastasis and angiogenesis of laryngeal carcinoma. Asian Pac J Cancer Prev APJCP 16(6):2313–2316

    Article  PubMed  Google Scholar 

  11. Lal G, Hashimi S, Smith BJ, Lynch CF, Zhang L, Robinson RA, Weigel RJ (2009) Extracellular matrix 1 (ECM1) expression is a novel prognostic marker for poor long-term survival in breast cancer: a Hospital-based Cohort Study in Iowa. Ann Surg Oncol 16(8):2280–2287

    Article  PubMed  Google Scholar 

  12. Sercu S, Poumay Y, Herphelin F, Liekens J, Beek L, Zwijsen A, Wessagowit V, Huylebroeck D, McGrath JA, Merregaert J (2007) Functional redundancy of extracellular matrix protein 1 in epidermal differentiation. Br J Dermatol 157(4):771–775

    Article  CAS  PubMed  Google Scholar 

  13. Lee KM, Nam K, Oh S, Lim J, Kim YP, Lee J, Yu JH, Ahn SH, Kim SB, Noh DY et al (2014) Extracellular matrix protein 1 regulates cell proliferation and trastuzumab resistance through activation of epidermal growth factor-signaling. Breast Cancer Res 16(6):479

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lee KM, Nam K, Oh S, Lim J, Kim RK, Shim D, Choi JH, Lee SJ, Yu JH, Lee JW et al (2015) ECM1 regulates tumor metastasis and CSC-like property through stabilization of β-catenin. Oncogene 34(50):6055–6065

    Article  CAS  PubMed  Google Scholar 

  15. Sercu S, Zhang L, Merregaert J (2008) The extracellular matrix protein 1: its molecular interaction and implication in tumor progression. Cancer Invest 26(4):375–384

    Article  CAS  PubMed  Google Scholar 

  16. Lal G, Contreras PG, Kulak M, Woodfield G, Bair T, Domann FE, Weigel RJ (2013) Human melanoma cells over-express extracellular matrix 1 (ECM1) which is regulated by TFAP2C. Plos ONE 8(9):e73953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lopez-Marure R, Contreras PG, Dillon JS (2011) Effects of dehydroepiandrosterone on proliferation, migration, and death of breast cancer cells. Eur J Pharmacol 660(2–3):268–274

    Article  CAS  PubMed  Google Scholar 

  18. Geback T, Schulz MM, Koumoutsakos P, Detmar M (2009) TScratch: a novel and simple software tool for automated analysis of monolayer wound healing assays. Biotechniques 46(4):265–274

    CAS  PubMed  Google Scholar 

  19. Kim HR, Gallant C, Leavis PC, Gunst SJ, Morgan KG (2008) Cytoskeletal remodeling in differentiated vascular smooth muscle is actin isoform dependent and stimulus dependent. Am J Physiol Cell Physiol 295(3):C768–778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Johnson JL, Winterwood N, DeMali KA, Stipp CS (2009) Tetraspanin CD151 regulates RhoA activation and the dynamic stability of carcinoma cell-cell contacts. J Cell Sci 122(Pt 13):2263–2273

    Article  CAS  PubMed  Google Scholar 

  21. Yilmaz M, Christofori G (2010) Mechanisms of motility in metastasizing cells. Mol Cancer Res 8(5):629–642

    Article  CAS  PubMed  Google Scholar 

  22. Vigorito E, Billadeu DD, Savoy D, McAdam S, Doody G, Fort P, Turner M (2003) RhoG regulates gene expression and the actin cytoskeleton in lymphocytes. Oncogene 22(3):330–342

    Article  CAS  PubMed  Google Scholar 

  23. de Frutos S, Diaz JM, Nitta CH, Sherpa ML, Bosc LV (2011) Endothelin-1 contributes to increased NFATc3 activation by chronic hypoxia in pulmonary arteries. Am J Physiol Cell Physiol 301(2):C441–450

    Article  PubMed  PubMed Central  Google Scholar 

  24. Nemeth ZH, Deitch EA, Davidson MT, Szabo C, Vizi ES, Hasko G (2004) Disruption of the actin cytoskeleton results in nuclear factor-κB activation and inflammatory mediator production in cultured human intestinal epithelial cells. J Cell Physiol 200(1):71–81

    Article  CAS  PubMed  Google Scholar 

  25. Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23

    Article  PubMed  PubMed Central  Google Scholar 

  26. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA, Hernandez-Boussard T, Wang P, Gazdar AF et al (2009) Molecular profiling of breast cancer cell lines defines relevant tumor models and provides a resource for cancer gene discovery. Plos ONE 4(7):e6146

    Article  PubMed  PubMed Central  Google Scholar 

  27. Blanchoin L, Boujemaa-Paterski R, Sykes C, Plastino J (2014) Actin dynamics, architecture, and mechanics in cell motility. Physiol Rev 94(1):235–263

    Article  CAS  PubMed  Google Scholar 

  28. Kumar S, Weaver VM (2009) Mechanics, malignancy, and metastasis: the force journey of a tumor cell. Cancer Metastasis Rev 28(1–2):113–127

    Article  PubMed  PubMed Central  Google Scholar 

  29. O’Connor K, Chen M (2013) Dynamic functions of RhoA in tumor cell migration and invasion. Small GTPases 4(3):141–147

    Article  PubMed  PubMed Central  Google Scholar 

  30. Fritz G, Just I, Kaina B (1999) Rho GTPases are over-expressed in human tumors. Int J Cancer 81(5):682–687

    Article  CAS  PubMed  Google Scholar 

  31. van Golen KL, Davies S, Wu ZF, Wang Y, Bucana CD, Root H, Chandrasekharappa S, Strawderman M, Ethier SP, Merajver SD (1999) A novel putative low-affinity insulin-like growth factor-binding protein, LIBC (lost in inflammatory breast cancer), and RhoC GTPase correlate with the inflammatory breast cancer phenotype. Clin Cancer Res 5(9):2511–2519

    PubMed  Google Scholar 

  32. Denoyelle C, Albanese P, Uzan G, Hong L, Vannier JP, Soria J, Soria C (2003) Molecular mechanism of the anti-cancer activity of cerivastatin, an inhibitor of HMG-CoA reductase, on aggressive human breast cancer cells. Cell Signal 15(3):327–338

    Article  CAS  PubMed  Google Scholar 

  33. Chen M, Bresnick AR, O’Connor KL (2013) Coupling S100A4 to Rhotekin alters Rho signaling output in breast cancer cells. Oncogene 32(32):3754–3764

    Article  CAS  PubMed  Google Scholar 

  34. Vega FM, Fruhwirth G, Ng T, Ridley AJ (2011) RhoA and RhoC have distinct roles in migration and invasion by acting through different targets. J Cell Biol 193(4):655–665

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Simpson KJ, Dugan AS, Mercurio AM (2004) Functional analysis of the contribution of RhoA and RhoC GTPases to invasive breast carcinoma. Cancer Res 64(23):8694–8701

    Article  CAS  PubMed  Google Scholar 

  36. Kalkhoven E, Roelen BA, de Winter JP, Mummery CL, van den Eijnden-van Raaij AJ, van der Saag PT, van der Burg B (1995) Resistance to transforming growth factor beta and activin due to reduced receptor expression in human breast tumor cell lines. Cell Growth Differ 6(9):1151–1161

    CAS  PubMed  Google Scholar 

  37. Laiho M, Weis MB, Massague J (1990) Concomitant loss of transforming growth factor (TGF)-beta receptor types I and II in TGF-beta-resistant cell mutants implicates both receptor types in signal transduction. J Biol Chem 265(30):18518–18524

    CAS  PubMed  Google Scholar 

  38. Buck MB, Fritz P, Dippon J, Zugmaier G, Knabbe C (2004) Prognostic significance of transforming growth factor beta receptor II in estrogen receptor-negative breast cancer patients. Clin Cancer Res 10(2):491–498

    Article  CAS  PubMed  Google Scholar 

  39. Jothy S (2003) CD44 and its partners in metastasis. Clin Exp Metastasis 20(3):195–201

    Article  CAS  PubMed  Google Scholar 

  40. Louderbough JM, Schroeder JA (2011) Understanding the dual nature of CD44 in breast cancer progression. Mol Cancer Res 9(12):1573–1586

    Article  CAS  PubMed  Google Scholar 

  41. Afify A, Purnell P, Nguyen L (2009) Role of CD44s and CD44v6 on human breast cancer cell adhesion, migration, and invasion. Exp Mol Pathol 86(2):95–100

    Article  CAS  PubMed  Google Scholar 

  42. Li DM, Feng YM (2011) Signaling mechanism of cell adhesion molecules in breast cancer metastasis: potential therapeutic targets. Breast Cancer Res Treat 128(1):7–21

    Article  CAS  PubMed  Google Scholar 

  43. Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11(5):353–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Authors’ contributions

P. Gomez-Contreras: concept, design of experiments, data acquisition, analysis and interpretation of data, writing of manuscript. J. M. Ramiro-Díaz: design of experiments, data acquisition, analysis and interpretation of data, writing of manuscript and critical review. A. Sierra: data acquisition, writing of manuscript draft. C. Stipp: concept and design, writing of manuscript and critical review. F. E. Domann: interpretation of data, critical review of manuscript. R. J. Weigel: concept, interpretation of data, critical review of manuscript. G. Lal: concept, design, data analysis and interpretation, writing of manuscript and critical review.

Funding

This work was supported by NIH 1 K08 CA151658-01A1 (to GL) and the Department of Surgery at the University of Iowa. The funding sources have no role in the design of the study, data collection, analysis, interpretation of the data or writing of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Lal.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10585_2016_9827_MOESM1_ESM.tif

Supplementary Figure 1: (A) Wound scratch assay following Mitomycin C treatment of MDAMB231 cells. Images taken at 4X magnification. (B) A set of four pictures were analyzed using T-Scratch software. Percentage of healed wound area was normalized by setting the value at 0 h as 1. Statistically significant differences were again noted between siECM1 cells and NT cells (p = 0.01) and between NT cells and NT + Mitomycin groups (p = 0.03), indicated by *. There was a trend for ECM1 silenced + Mitomycin cells to migrate less than NT + mitomycin cells but this did not reach statistical significance (p = 0.2) (TIFF 815 kb)

10585_2016_9827_MOESM2_ESM.tif

Supplementary Figure 2: (A) Wound healing assay in MDAMB231 cells following S100A4 silencing compared to ECM1 silencing. (B) A set of four pictures were analyzed using T-Scratch software. Percentage of healed wound area was normalized by setting the value at 0 h as 1. Statistically significant reduction in the normalized healed wound area was found after ECM1 and S100A4 silencing compared to cells transfected with NT control (*p = 0.01 for both), but there was no difference in wound migration between ECM1 or S100A4 silenced cells (TIFF 1012 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gómez-Contreras, P., Ramiro-Díaz, J.M., Sierra, A. et al. Extracellular matrix 1 (ECM1) regulates the actin cytoskeletal architecture of aggressive breast cancer cells in part via S100A4 and Rho-family GTPases. Clin Exp Metastasis 34, 37–49 (2017). https://doi.org/10.1007/s10585-016-9827-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-016-9827-5

Keywords

Navigation