Skip to main content

Advertisement

Log in

Free-breathing 3D diffusion MRI for high-resolution hepatic metastasis characterization in small animals

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The goal of this study was to develop a 3D diffusion weighted sequence for free breathing liver imaging in small animals at high magnetic field. Hepatic metastases were detected and the apparent diffusion coefficients (ADC) were measured. A 3D SE-EPI sequence was developed by (i) inserting a water-selective excitation radiofrequency pulse to suppress adipose tissue signal and (ii) bipolar diffusion gradients to decrease the sensitivity to respiration motion. Mice with hepatic metastases were imaged at 7T by applying b values from 200 to 1100 s/mm2. 3D images with high spatial resolution (182 × 156 × 125 µm) were obtained in only 8 min 32 s. The modified DW-SE-EPI sequence allowed to obtain 3D abdominal images of healthy mice with fat SNR 2.5 times lower than without any fat suppression method and sharpness 2.8 times higher than on respiration-triggered images. Due to the high spatial resolution, the core and the periphery of disseminated hepatic metastases were differentiated at high b-values only, demonstrating the presence of edema and proliferating cells (with ADC of 2.65 × 10−3 and 1.55 × 10−3 mm2/s, respectively). Furthermore, these metastases were accurately distinguished from proliferating ones within the same animal at high b-values (mean ADC of 0.38 × 10−3 mm2/s). Metastases of less than 1.7 mm3 diameter were detected. The new 3D SE-EPI sequence enabled to obtain diffusion information within liver metastases. In addition of intra-metastasis heterogeneity, differences in diffusion were measured between metastases within an animal. This sequence could be used to obtain diffusion information at high magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hompland T, Ellingsen C, Galappathi K, Rofstad EK (2014) DW-MRI in assessment of the hypoxic fraction, interstitial fluid pressure, and metastatic propensity of melanoma xenografts. BMC Cancer 14:92

    Article  PubMed Central  PubMed  Google Scholar 

  2. Panagiotaki E, Walker-Samuel S, Siow B, Johnson SP, Rajkumar V, Pedley RB, Lythgoe MF, Alexander DC (2014) Noninvasive quantification of solid tumor microstructure using VERDICT MRI. Cancer Res 74(7):1902–1912

    Article  CAS  PubMed  Google Scholar 

  3. Li X, Jiang H, Niu J, Zheng Y (2014) Correlation of ADC value with pathologic indexes in colorectal tumor homografts in Balb/c mouse. Chin J Cancer Res 26(4):444–450

    PubMed Central  PubMed  Google Scholar 

  4. Yun BL, Cho N, Li M, Jang MH, Park SY, Kang HC, Kim B, Song IC, Moon WK (2014) Intratumoral heterogeneity of breast cancer xenograft models: texture analysis of diffusion-weighted mr imaging. Korean J Radiol 15(5):591–604

    Article  PubMed Central  PubMed  Google Scholar 

  5. Squillaci E, Bolacchi F, Altobelli S, Franceschini L, Bergamini A, Cantonetti M, Simonetti G (2014) Pre-treatment staging of multiple myeloma patients: comparison of whole-body diffusion weighted imaging with whole-body T1-weighted contrast-enhanced imaging. Acta Radiol. doi:10.1177/0284185114538792

    PubMed  Google Scholar 

  6. Wang HJ, Pui MH, Guo Y, Li SR, Liu MJ, Guan J, Zhang XL, Feng Y (2014) Value of normalized apparent diffusion coefficient for estimating histological grade of vesical urothelial carcinoma. Clin Radiol 69:727–731

    Article  CAS  PubMed  Google Scholar 

  7. Roth Y, Tichler T, Kostenich G, Ruiz-Cabello J, Maier SE, Cohen JS, Orenstein A, Mardor Y (2004) High-b-value diffusion-weighted mr imaging for pretreatment prediction and early monitoring of tumor response to therapy in mice. Radiol 232:685–692

    Article  Google Scholar 

  8. Zhao YL, Guo QQ, Yang GG, Wang QD (2014) Early changes in apparent diffusion coefficient as an indicator of response to sorafenib in hepatocellular carcinoma. J Zhejiang University-Science B (Biomed Biotechnol) 15(8):713–719

    Article  CAS  Google Scholar 

  9. Benndorf M, Schelhorn J, Dietzel M, Kaiser WA, Baltzer PAT (2012) Diffusion weighted imaging of liver lesions suspect for metastases: Apparent diffusion coefficient (ADC) values and lesion contrast are independent from Gd-EOB-DTPA administration. Eur J Radiol 81:e849–e853

    Article  PubMed  Google Scholar 

  10. Guilfoyle DN, Gerum S, Hrabe J (2011) Murine diffusion imaging using snapshot interleaved EPI acquisition at 7 T. J Neurosci Methods 199:10–14

    Article  PubMed Central  PubMed  Google Scholar 

  11. Van de Looij Y, Mauconduit F, Beaumont M, Valable S, Farion R, Francony G, Payen JF, Lahrech H (2011) Diffusion tensor imaging of diffuse axonal injury in a rat brain trauma model. NMR Biomed 25:93–103

    Article  PubMed  Google Scholar 

  12. Xue R, Sawada M, Goto S, Hurn PD, Traystman RJ, Van Zijl PCM, Mori S (2001) Rapid three-dimensional diffusion MRI facilitates the study of acute stroke in mice. Magn Reson Med 46:183–188

    Article  CAS  PubMed  Google Scholar 

  13. Moffat BA, Chenevert TL, Meyer CR, Mckeevery PE, Hall DE, Hoff BA, Johnson TD, Rehemtulla A, Ross BD (2006) The functional diffusion map: an imaging biomarker for the early prediction of cancer treatment outcome. Neoplasia 8:259–267

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Harsan LA, Paul D, Schnell S, Kreher BW, Hennig J, Staiger JF, von Elverfeldt D (2010) In vivo diffusion tensor magnetic resonance y imaging and fiber tracking of the mouse brain. NMR Biomed 23:884–896

    Article  PubMed  Google Scholar 

  15. Aggarwal M, Mori S, Shimogori T, Blackshaw S, Zhang J (2010) Three-dimensional diffusion tensor microimaging for anatomical characterization of the mouse brain. Magn Reson Med 64:249–261

    Article  PubMed Central  PubMed  Google Scholar 

  16. Padhani AR, Liu G, Mu-Koh D, Chenevert TL, Thoeny HC, Takahara T, Dzik-Jurasz A, Ross BD, Van Cauteren M, Collins D et al (2009) Diffusion-weighted magnetic resonance imaging as a cancer biomarker: consensus and recommendations. Neoplasia 11:102–125

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Morris VL, MacDonald IC, Koop S, Schmidt EE, Chambers AF, Groom AC (1993) Early interactions of cancer cells with the microvasculature in mouse liver and muscle during hematogenous metastasis: videomicroscopic analysis. Clin Exp Metastasis 11:377–390

    Article  CAS  PubMed  Google Scholar 

  18. Kornaat PR, Doornbos J, van der Molen AJ, Kloppenburg M, Nelissen RG, Hogendoorn PCW, Bloem JL (2004) Magnetic resonance imaging of knee cartilage using a water selective balanced steady-state free precession sequence. J Magn Reson Imaging 20:850–856

    Article  PubMed  Google Scholar 

  19. Gamper U, Boesiger P, Kozerke S (2007) Diffusion imaging of the in vivo heart using spin echoes-considerations on bulk motion sensitivity. Magn Reson Med 57:331–337

    Article  PubMed  Google Scholar 

  20. Koh DM, Collins DJ (2007) Diffusion-weighted MRI in the body: applications and challenges in oncology. Am J Roentgenol 188:1622–1635

    Article  Google Scholar 

  21. Thoeny HC, Ross BD (2010) Predicting and monitoring cancer treatment response with diffusion-weighted MRI. J Magn Reson Imaging 32:2–16

    Article  PubMed Central  PubMed  Google Scholar 

  22. Alexander AL, Tsuruda JS, Parker DL (1997) Elimination of Eddy current artifacts in diffusion-weighted echo-planar images: the use of bipolar gradients. Magn Reson Med 38:1016–1021

    Article  CAS  PubMed  Google Scholar 

  23. Buonocore MH, Zhu DC (2001) Image-based ghost correction for interleaved EPI. Magn Reson Med 45:96–108

    Article  CAS  PubMed  Google Scholar 

  24. Larson AC, Kellman P, Arai A, Hirsch GA, McVeigh E, Li D, Simonetti OP (2005) Preliminary investigation of respiratory self-gating for free-breathing segmented cine MRI. Magn Reson Med 53:159–168

    Article  PubMed Central  PubMed  Google Scholar 

  25. Ribot EJ, Duriez TJ, Trotier AJ, Thiaudiere E, Franconi JM, Miraux S (2014) Self-gated bSSFP sequences to detect iron-labeled cancer cells and/or metastases in vivo in mouse liver at 7 Tesla. J Magn Reson Imaging. doi:10.1002/jmri.24688

    Google Scholar 

  26. Yuan J, Madore B, Panych LP (2011) Fat–water selective excitation in balanced steady-state free precession using short spatial–spectral RF pulses. J Magn Reson 208:219–224

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zhou IY, Gao DS, Chow AM, Fan S, Cheung MM, Ling C, Liu X, Cao P, Guo H, Man K et al (2014) Effect of diffusion time on liver DWI: an experimental study of normal and fibrotic livers. Magn Reson Med 72:1389–1396

    Article  PubMed  Google Scholar 

  28. Chow AM, Gao DS, Fan SJ, Qiao Z, Lee FY, Yang J, Man K, Wu EX (2012) Liver fibrosis: an intravoxel incoherent motion (IVIM) study. J Magn Reson Imaging 36:159–167

    Article  PubMed  Google Scholar 

  29. Lee Y, Kim H (2014) Assessment of diffusion tensor MR imaging (DTI) in liver fibrosis with minimal confounding effect of hepatic steatosis. Magn Reson Med. doi:10.1002/mrm.25253

    Google Scholar 

  30. Lee HJ, Luci JJ, Tantawy MN, Lee H, Nam KT, Peterson TE, Price RR (2013) Detecting peritoneal dissemination of ovarian cancer in mice by DWIBS. Magn Reson Imaging 31:227–234

    Article  PubMed Central  PubMed  Google Scholar 

  31. Sun J, Zhang XP, Li XT, Tang L, Cui Y, Zhang XY, Sun YS (2014) Applicable apparent diffusion coefficient of an orthotopic mouse model of gastric cancer by improved clinical MRI diffusion weighted imaging. Sci Rep 4:6072

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Hennel F (1998) Image-based reduction of artifacts in multishot echo-planar imaging. J Magn Reson 134:206–213

    Article  CAS  PubMed  Google Scholar 

  33. Dou J, Reese TG, Tseng WYI, Wedeen VJ (2002) Cardiac diffusion MRI without motion effects. Magn Reson Med 48:105–114

    Article  PubMed  Google Scholar 

  34. Anderson SW, Soto JA, Milch HN, Ozonoff A, O’Brien M, Hamilton JA, Jara HJ (2011) Effect of disease progression on liver apparent diffusion coefficient values in a Murine model of NASH at 11.7 Tesla MRI. J Magn Reson Imaging 33:882–888

    Article  PubMed  Google Scholar 

  35. Wagner M, Maggiori L, Ronot M, Paradis V, Vilgrain V, Panis Y, Van Beers BE (2013) Diffusion-weighted and T2-weighted MR imaging for colorectal liver metastases detection in a rat model at 7 T: a comparative study using histological examination as reference. Eur Radiol 23:2156–2164

    Article  PubMed  Google Scholar 

  36. Perera M, Ribot EJ, Percy DB, McFadden C, Simedrea C, Palmieri D, Chambers AF, Foster PJ (2012) In vivo magnetic resonance imaging for investigating the development and distribution of experimental brain metastases due to breast cancer. Trans Oncol 5(3):217–225

    Article  Google Scholar 

  37. Radermacher KA, Magat J, Bouzin C, Laurent S, Dresselaers T, Himmelreich U, Boutry S, Mahieu I, Vander Elst L, Feron O et al (2012) Multimodal assessment of early tumor response to chemotherapy: comparison between diffusion-weighted MRI, 1H-MR spectroscopy of choline and USPIO particles targeted at cell death. NMR Biomed 25:514–522

    Article  CAS  PubMed  Google Scholar 

  38. Budde MD, Gold E, Jordan EK, Frank JA (2012) Differential microstructure and physiology of brain and bone metastases in a rat breast cancer model by diffusion and dynamic contrast enhanced MRI. Clin Exp Metastasis 29:51–62

    Article  PubMed Central  PubMed  Google Scholar 

  39. Sun XJ, Quan XY, Huang FH, Xu YK (2005) Quantitative evaluation of diffusion-weighted magnetic resonance imaging of focal hepatic lesions. World J Gastroenterol 11(41):6535–6537

    Article  PubMed Central  PubMed  Google Scholar 

  40. Speck O, Stadler J, Zaitsev M (2008) High resolution single-shot EPI at 7T. Magn Reson Mater Phy 21:73–86

    Article  Google Scholar 

  41. Freidlin RZ, Kakareka JW, Pohida TJ, Komlosh ME, Basser PJ (2012) A spin echo sequence with a single-sided bipolar diffusion gradient pulse to obtain snapshot diffusion weighted images in moving media. J Magn Reson 221:24–31

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a public grant, Translational Research and Advanced Imaging Laboratory, which is part of the French National Research Agency’s Investments for the Future Program (“NewFISP”; ANR- 10-LABX-57) and by the Centre National de la Recherche Scientifique (CNRS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emeline J. Ribot.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 12 kb)

10585_2015_9766_MOESM2_ESM.pdf

Supplementary Figure 1: Excitation profile of 1 2 3 2 1 pulse at 7T. The blue and the green line represent the water and the fat resonance frequencies, respectively. Supplementary material 2 (PDF 29 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribot, E.J., Trotier, A.J., Castets, C.R. et al. Free-breathing 3D diffusion MRI for high-resolution hepatic metastasis characterization in small animals. Clin Exp Metastasis 33, 167–178 (2016). https://doi.org/10.1007/s10585-015-9766-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9766-6

Keywords

Navigation