Skip to main content

Advertisement

Log in

The significance of lymphatic space invasion and its association with vascular endothelial growth factor-C expression in ovarian cancer

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The aim of this study is to investigate the significance of lymphatic space invasion (LSI) and tumor VEGF-C expression in the lymphatic spread of ovarian cancer. By performing immunostaining using human ovarian cancer specimens, we first investigated the association between the extent of LSI and tumor VEGF-C expression, tumor lymphangiogenesis, or the lymphatic metastasis. Moreover, by performing in vitro and in vivo experiments, we elucidated the role of VEGF-C in tumor lymphangiogenesis and lymph node metastasis as well as its role as a therapeutic target in ovarian cancer. The presence of LSI was associated with lymph node metastasis in patients with ovarian cancer. VEGF-C overexpression was significantly associated with the increased LSI and LVD in ovarian cancer. VEGF-C stimulated the lymphangiogenesis in vitro, induced the new lymph vessel formation, and increased the lymph node metastasis in mice models of ovarian cancer. The attenuation of VEGF-C expression by the treatment with mTORC1 inhibitor significantly inhibited lymphangiogenesis, and decreased lymph node metastasis in mice models of ovarian cancer. The presence of LSI is an indicator of nodal metastasis and is associated with higher tumor VEGF-C expression and worse clinical outcome of ovarian cancer patients. VEGF-C plays a crucial role in tumor lymphangiogenesis and lymph node metastasis of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

VEGF-C:

Vascular endothelial growth factor-C

VEGFR-3:

Vascular endothelial growth factor recepotor-3

LVEPCs:

Lymphatic vascular endothelial progenitor cells

LVD:

Lymphatic vessel density

LSI:

Lymphatic space invasion

HMVEC-dLy:

Human dermal lymphatic microvascular endothelial cells

ELISA:

Enzyme-linked immunosorbent assay

LYVE-1:

Lymphatic vessel endothelial hyaluronan receptor 1 cell marker

FACS:

Fluorescence activated cell sorting

mTORC1:

Mammalian target of rapamycin complex 1

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  2. Jemal A, Siegel R, Xu J et al (2010) Cancer statistics. CA Cancer J Clin 60(5):277–300

    Article  PubMed  Google Scholar 

  3. Gatta G, Lasota MB, Verdecchia A, EUROCARE Working Group (1998) Survival of European women with gynaecological tumours, during the period 1978-1989. Eur J Cancer 34(14):2218–2225

    Article  CAS  PubMed  Google Scholar 

  4. Burger RA, Brady MF, Bookman MA et al (2011) Incorporation of bevacizumab in the primary treatment of ovarian cancer. N Engl J Med 365(26):2473–2483

    Article  CAS  PubMed  Google Scholar 

  5. Mikami M (2014) Role of lymphadenectomy for ovarian cancer. J Gynecol Oncol 25(4):279–281

    Article  PubMed Central  PubMed  Google Scholar 

  6. Chan JK, Munro EG, Cheung MK et al (2007) Association of lymphadenectomy and survival in stage I ovarian cancer patients. Obstet Gynecol 109(1):12–19

    Article  PubMed  Google Scholar 

  7. Alitalo K (2011) The lymphatic vasculature in disease. Nat Med 17(11):1371–1380

    Article  CAS  PubMed  Google Scholar 

  8. Kim HS, Park NH, Chung HH et al (2008) Significance of preoperative serum CA-125 levels in the prediction of lymph node metastasis in epithelial ovarian cancer. Acta Obstet Gynecol Scand 87(11):1136–1142

    Article  PubMed  Google Scholar 

  9. Li AJ, Madden AC, Cass I et al (2004) The prognostic significance of thrombocytosis in epithelial ovarian carcinoma. Gynecol Oncol 92(1):211–214

    Article  PubMed  Google Scholar 

  10. Powless CA, Aletti GD, Bakkum-Gamez JN et al (2011) Risk factors for lymph node metastasis in apparent early-stage epithelial ovarian cancer: implications for surgical staging. Gynecol Oncol 122(3):536–540

    Article  PubMed  Google Scholar 

  11. Matsuo K, Sheridan TB, Yoshino K et al (2012) Significance of lymphovascular space invasion in epithelial ovarian cancer. Cancer Med 1(2):156–164

    Article  PubMed Central  PubMed  Google Scholar 

  12. Birner P, Obermair A, Schindl M et al (2001) Selective immunohistochemical staining of blood and lymphatic vessels reveals independent prognostic influence of blood and lymphatic vessel invasion in early-stage cervical cancer. Clin Cancer Res 7(1):93–97

    CAS  PubMed  Google Scholar 

  13. Weber SK, Sauerwald A, Polcher M et al (2012) Detection of lymphovascular invasion by D2-40 (podoplanin) immunoexpression in endometrial cancer. Int J Gynecol Cancer 22(8):1442–1448

    Article  PubMed  Google Scholar 

  14. Decio A, Taraboletti G, Patton V et al (2014) Vascular endothelial growth factor c promotes ovarian carcinoma progression through paracrine and autocrine mechanisms. Am J Pathol 184(4):1050–1061

    Article  CAS  PubMed  Google Scholar 

  15. Ueda M, Hung YC, Terai Y et al (2005) Vascular endothelial growth factor-C expression and invasive phenotype in ovarian carcinomas. Clin Cancer Res 11(9):3225–3232

    Article  CAS  PubMed  Google Scholar 

  16. Cheng D, Liang B, Li Y (2013) Serum vascular endothelial growth factor (VEGF-C) as a diagnostic and prognostic marker in patients with ovarian cancer. PLoS One 8(2):e55309

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Kodama M, Kitadai Y, Tanaka M et al (2008) Vascular endothelial growth factor C stimulates progression of human gastric cancer via both autocrine and paracrine mechanisms. Clin Cancer Res 14(22):7205–7214

    Article  CAS  PubMed  Google Scholar 

  18. Koukourakis MI, Giatromanolaki A, Sivridis E et al (2005) LYVE-1 immunohistochemical assessment of lymphangiogenesis in endometrial and lung cancer. J Clin Pathol 58(2):202–206

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Bauer SM, Bauer RJ, Liu ZJ et al (2005) Vascular endothelial growth factor-C promotes vasculogenesis, angiogenesis, and collagen constriction in three-dimensional collagen gels. J Vasc Surg 41(4):699–707

    Article  PubMed  Google Scholar 

  20. Tamada Y, Aoki D, Nozawa S et al (2004) Model for paraaortic lymph node metastasis produced by orthotopic implantation of ovarian carcinoma cells in athymic nude mice. Eur J Cancer 40(1):158–163

    Article  CAS  PubMed  Google Scholar 

  21. Carracedo A, Ma L, Teruya-Feldstein J et al (2008) Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-dependent feedback loop in human cancer. J Clin Invest 118(9):3065–3074

    PubMed Central  CAS  PubMed  Google Scholar 

  22. Di Nicolantonio F, Arena S, Tabernero J et al (2010) Deregulation of the PI3 K and KRAS signaling pathways in human cancer cells determines their response to everolimus. J Clin Invest 120(8):2858–2866

    Article  PubMed Central  PubMed  Google Scholar 

  23. Bogos K, Renyi-Vamos F, Dobos J et al (2009) High VEGFR-3-positive circulating lymphatic/vascular endothelial progenitor cell level is associated with poor prognosis in human small cell lung cancer. Clin Cancer Res 15(5):1741–1746

    Article  CAS  PubMed  Google Scholar 

  24. Religa P, Cao R, Bjorndahl M et al (2005) Presence of bone marrow-derived circulating progenitor endothelial cells in the newly formed lymphatic vessels. Blood 106(13):4184–4190

    Article  CAS  PubMed  Google Scholar 

  25. Mabuchi S, Kuroda H, Takahashi R et al (2015) The PI3K/AKT/mTOR pathway as a therapeutic target in ovarian cancer. Gynecol Oncol 137(1):173–179

    Article  CAS  PubMed  Google Scholar 

  26. Kobayashi S, Kishimoto T, Kamata S et al (2007) Rapamycin, a specific inhibitor of the mammalian target of rapamycin, suppresses lymphangiogenesis and lymphatic metastasis. Cancer Sci 98(5):726–733

    Article  CAS  PubMed  Google Scholar 

  27. Salven P, Mustjoki S, Alitalo R et al (2003) VEGFR-3 and CD133 identify a population of CD34+ lymphatic/vascular endothelial precursor cells. Blood 101(1):168–172

    Article  CAS  PubMed  Google Scholar 

  28. Tan YZ, Wang HJ, Zhang MH et al (2014) CD34+ VEGFR-3+ progenitor cells have a potential to differentiate towards lymphatic endothelial cells. J Cell Mol Med 18(3):422–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Asahara T, Takahashi T, Masuda H et al (1999) VEGF contributes to postnatal neovascularization by mobilizing bone marrow-derived endothelial progenitor cells. EMBO J 18(14):3964–3972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Patel V, Marsh CA, Dorsam RT et al (2011) Decreased lymphangiogenesis and lymph node metastasis by mTOR inhibition in head and neck cancer. Cancer Res 71(22):7103–7112

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Hirashima K, Baba Y, Watanabe M et al (2010) Phosphorylated mTOR expression is associated with poor prognosis for patients with esophageal squamous cell carcinoma. Ann Surg Oncol 17(9):2486–2493

    Article  PubMed  Google Scholar 

  32. Yu G, Wang J, Chen Y et al (2009) Overexpression of phosphorylated mammalian target of rapamycin predicts lymph node metastasis and prognosis of chinese patients with gastric cancer. Clin Cancer Res 15(5):1821–1829

    Article  CAS  PubMed  Google Scholar 

  33. Mabuchi S, Altomare DA, Connolly DC et al (2007) RAD001 (Everolimus) delays tumor onset and progression in a transgenic mouse model of ovarian cancer. Cancer Res 67(6):2408–2413

    Article  CAS  PubMed  Google Scholar 

  34. Mabuchi S, Altomare DA, Cheung M et al (2007) RAD001 inhibits human ovarian cancer cell proliferation, enhances cisplatin-induced apoptosis, and prolongs survival in an ovarian cancer model. Clin Cancer Res 13(14):4261–4270

    Article  CAS  PubMed  Google Scholar 

  35. Lin J, Lalani AS, Harding TC et al (2005) Inhibition of lymphogenous metastasis using adeno-associated virus-mediated gene transfer of a soluble VEGFR-3 decoy receptor. Cancer Res 65(15):6901–6909

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Mitsuyo Tone and Takako Sawamura for the immunohistochemical works. We also thank Ayako Okamura for her technical assistance and Yuko Morishita for her secretarial assistance. S. Mabuchi is supported in part by grant-in-aid for General Scientific Research, no. 23592446, from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seiji Mabuchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Takeshi Hisamatsu, Seiji Mabuchi and Tomoyuki Sasano have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 42 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hisamatsu, T., Mabuchi, S., Sasano, T. et al. The significance of lymphatic space invasion and its association with vascular endothelial growth factor-C expression in ovarian cancer. Clin Exp Metastasis 32, 789–798 (2015). https://doi.org/10.1007/s10585-015-9751-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9751-0

Keywords

Navigation