Skip to main content

Advertisement

Log in

Stanniocalcin-1 promotes metastasis in a human breast cancer cell line through activation of PI3K

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Stanniocalcin-l (STC-1) is a secreted glycoprotein hormone that regulates calcium and phosphate homeostasis. STC-1 expression is upregulated in several cancers including breast cancer, and has been shown to be prognostic. Although these clinical observations implicate STC-1 as a potential tumor marker, it is still unclear whether STC-1 confers a malignant phenotype. In this study, this question was addressed by overexpressing STC-1 in the human breast cancer cell line MDA-MB-231 and examining the resultant phenotype in vitro and in vivo. Overexpression of STC-1 enhanced invasiveness of MDA-MB-231 cells in vitro and promoted their lung metastasis in vivo, while having no effect on proliferation, adhesion, or proteinase activity. The addition of soluble STC-1 to MDA-MB-231 cultures resulted in the activation of the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway, suggesting a mechanistic basis for the observed increases in cell motility and metastasis. Taken together, it was indicated that secreted STC-1 promotes metastatic potential of breast cancer cells via activation of PI3K/AKT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

STC-1:

Stannocalcin-1

MAPK:

Mitogen-activated protein kinase

PI3K:

Phosphoinositide 3-kinase

References

  1. Wagner GF, Hammpong M, Park CM, Copp DH (1986) Purification, characterization, and bioassay of teleocalcin, a glycoprotein from salmon corpuscles of Stannius. Gen Comp Endocrinol 63(3):481–491

    Article  PubMed  CAS  Google Scholar 

  2. Chang AC, Janosi J, Hulsbeek M, de Jong D, Jeffrey KJ, Noble JR, Reddel RR (1995) A novel human cDNA highly homologous to the fish hormone stanniocalcin. Mol Cell Endocrinol 112(2):241–247

    Article  PubMed  CAS  Google Scholar 

  3. Chang AC, Jeffrey KJ, Tokutake Y, Shimamoto A, Neumann AA, Dunham MA, Cha J, Sugawara M, Furuichi Y, Reddel RR (1998) Human stanniocalcin (STC): genomic structure, chromosomal localization, and the presence of CAG trinucleotide repeats. Genomics 47(3):393–398

    Article  PubMed  CAS  Google Scholar 

  4. Jellinek DA, Chang AC, Larsen MR, Wang X, Robinson PJ, Reddel RR (2000) Stanniocalcin 1 and 2 are secreted as phosphoproteins from human fibrosarcoma cells. Biochem J 350:453–461

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Olsen HS, Cepeda MA, Zhang QQ, Rosen CA, Vozzolo BL, Wagner GF (1996) Human stanniocalcin: a possible hormonal regulator of mineral metabolism. Proc Natl Acad Sci USA 93(5):1792–1796

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  6. Fujiwara Y, Sugita Y, Nakamori S, Miyamoto A, Shiozaki K, Nagano H, Sakon M, Monden M (2000) Assessment of Stanniocalcin-1 mRNA as a molecular marker for micrometastases of various human cancers. Int J Oncol 16(4):799–804

    PubMed  CAS  Google Scholar 

  7. Liu G, Yang G, Chang B, Mercado-Uribe I, Huang M, Zheng J, Bast RC, Lin SH, Liu J (2010) Stanniocalcin 1 and ovarian tumorigenesis. J Natl Cancer Inst 102(11):812–827

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  8. Tohmiya Y, Koide Y, Fujimaki S, Harigae H, Funato T, Kaku M, Ishii T, Munakata Y, Kameoka J, Sasaki T (2004) Stanniocalcin-1 as a novel marker to detect minimal residual disease of human leukemia. Tohoku J Exp Med 204(2):125–133

    Article  PubMed  CAS  Google Scholar 

  9. Tamura S, Oshima T, Yoshihara K, Kanazawa A, Yamada T, Inagaki D, Sato T, Yamamoto N, Shiozawa M, Morinaga S, Akaike M, Kunisaki C, Tanaka K, Masuda M, Imada T (2011) Clinical significance of STC1 gene expression in patients with colorectal cancer. Anticancer Res 31(1):325–330

    PubMed  CAS  Google Scholar 

  10. Du YZ, Gu XH, Li L, Gao F (2011) The diagnostic value of circulating stanniocalcin-1 mRNA in non-small cell lung cancer. J Surg Oncol 104(7):836–840

    Article  PubMed  CAS  Google Scholar 

  11. Shirakawa M, Fujiwara Y, Sugita Y, Moon JH, Takiguchi S, Nakajima K, Miyata H, Yamasaki M, Mori M, Doki Y (2012) Assessment of Stanniocalcin-1 as a prognostic marker in human esophageal squamous carcinoma. Oncol Rep 27(4):940–946

    PubMed  CAS  PubMed Central  Google Scholar 

  12. Joensuu K, Heikkila P, Andersson LC (2002) Tumor dormancy: elevated expression of stanniocalcins in late relapsing breast cancer. Cancer Lett 265(1):76–83

    Article  Google Scholar 

  13. Wascher RA, Huynh KT, Giuliano AE, Hansen NM, Singer FR, Elashoff D, Hoon DS (2003) Stanniocalcin-1: a novel molecular blood and bone marrow marker for human breast cancer. Clin Cancer Res 9(4):1427–1435

    PubMed  CAS  Google Scholar 

  14. Bautista S, Vallès H, Walker RL, Anzick S, Zeillinger R, Meltzer P, Theillet C (1998) In breast cancer, amplification of the steroid receptor coactivator gene AIB1 is correlated with estrogen and progesterone receptor positivity. Clin Cancer Res 4(12):2925–2929

    PubMed  CAS  Google Scholar 

  15. Courjal F, Cuny M, Simony-Lafontaine J, Louason G, Speiser P, Zeillinger R, Rodriguez C, Theillet C (1997) Mapping of DNA amplifications at 15 chromosomal localizations in 1875 breast tumors: definition of phenotypic groups. Cancer Res 57(19):4360–4367

    PubMed  CAS  Google Scholar 

  16. Pignatelli J, LaLonde SE, LaLonde DP, Clarke D, Turner CE (2012) Actopaxin (α-parvin) phosphorylation is required for matrix degradation and cancer cell invasion. J Biol Chem 287(44):37309–37320

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Kestler DP, Foster JS, Bruker CT, Prenshaw JW, Kennel SJ, Wall JS, Weiss DT, Solomon A (2011) ODAM expression inhibits human breast cancer tumorigenesis. Breast Cancer (Auckl) 5:73–85

    CAS  Google Scholar 

  18. Roy S, Chakravarty D, Cortez V, De Mukhopadhyay K, Bandyopadhyay A, Ahn JM, Raj GV, Tekmal RR, Sun L, Vadlamudi RK (2012) Significance of PELP1 in ER-negative breast cancer metastasis. Mol Cancer Res 10(1):25–33

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  19. Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massagué J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436(7050):518–524

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Tanaka M, Kogawa K, Nishihori Y, Kuribayashi K, Nakamura K, Muramatsu H, Koike K, Sakamaki S, Niitsu Y (1997) Suppression of intracellular Cu-Zn SOD results in enhanced motility and metastasis of Meth A sarcoma cells. Int J Cancer 73(2):187–192

    Article  PubMed  CAS  Google Scholar 

  21. He LF, Wang TT, Gao QY, Zhao GF, Huang YH, Yu LK, Hou YY (2011) Stanniocalcin-1 promotes tumor angiogenesis through up-regulation of VEGF in gastric cancer cells. J Biomed Sci 18:39

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Ohkouchi S, Block GJ, Katsha AM, Kanehira M, Ebina M, Kikuchi T, Saijo Y, Nukiwa T, Prockop DJ (2012) Mesenchymal stromal cells protect cancer cells from ROS-induced apoptosis and enhance the Warburg effect by secreting STC1. Mol Ther 20(2):417–423

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Peña C, Céspedes MV, Lindh MB, Kiflemariam S, Mezheyeuski A, Edqvist PH, Hägglöf C, Birgisson H, Bojmar L, Jirström K, Sandström P, Olsson E, Veerla S, Gallardo A, Sjöblom T, Chang AC, Reddel RR, Mangues R, Augsten M, Ostman A (2013) STC1 expression by cancer-associated fibroblasts drives metastasis of colorectal cancer. Cancer Res 73(4):1287–1297

    Article  PubMed  Google Scholar 

  24. Friedl P, Wolf K (2003) Tumour-cell invasion and migration: diversity and escape mechanisms. Nat Rev Cancer 3(5):362–374

    Article  PubMed  CAS  Google Scholar 

  25. Sotsios Y, Ward SG (2000) Phosphoinositide 3-kinase: a key biochemical signal for cell migration in response to chemokines. Immunol Rev 177:217–235

    Article  PubMed  CAS  Google Scholar 

  26. Gan Y, Shi C, Inge L, Hibner M, Balducci J, Huang Y (2010) Differential roles of ERK and Akt pathways in regulation of EGFR-mediated signaling and motility in prostate cancer cells. Oncogene 29(35):4947–4958

    Article  PubMed  CAS  Google Scholar 

  27. Kuribayashi K, Nakamura K, Tanaka M, Sato T, Kato J, Sasaki K, Takimoto R, Kogawa K, Terui T, Takayama T, Onuma T, Matsunaga T, Niitsu Y (2007) Essential role of protein kinase C zeta in transducing a motility signal induced by superoxide and a chemotactic peptide, fMLP. J Cell Biol 176(7):1049–1060

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Luo CW, Kawamura K, Klein C, Hsueh AJ (2004) Paracrine regulation of ovarian granulosa cell differentiation by stanniocalcin (STC) 1: mediation through specific STC1 receptors. Mol Endocrinol 18(8):2085–2096

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Grants-in-Aid for Scientific Research in Japan (Grant No. 24590700) M. T., K. K., D. K., and N. W.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naoki Watanabe.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Figure 1

Real-time PCR and western blotting analysis of STC-1 expression in MDA-MB-231 breast cancer cell lines. (a) Transcript and (b) protein expression of STC-1 was detected by Real-time PCR and western blotting, respectively, in MB231-M and -S cells stably transfected with an empty control vector and a vector encoding secreted STC-1, respectively. Transcript expression was determined relative to the internal control GAPDH and Ran was used as a loading control for the western blotting. Supplementary material 1 (TIFF 19762 kb)

Supplementary Figure 2

The expression of phosphorylated Akt in MB231-M and -S cell lysates. Whole cell lysate from MB231-M and -S that cultured without FBS for 24 h was harvested. The level of phosphorylated Akt was detected by western blotting as described above. Supplementary material 2 (TIFF 19762 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murai, R., Tanaka, M., Takahashi, Y. et al. Stanniocalcin-1 promotes metastasis in a human breast cancer cell line through activation of PI3K. Clin Exp Metastasis 31, 787–794 (2014). https://doi.org/10.1007/s10585-014-9668-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9668-z

Keywords

Navigation