Skip to main content

Advertisement

Log in

FN14 expression correlates with MET in NSCLC and promotes MET-driven cell invasion

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The five-year survival rate in advanced non-small cell lung cancer (NSCLC) remains below ten percent. The invasive and metastatic nature of NSCLC tumor cells contributes to the high mortality rate, and as such the mechanisms that govern NSCLC metastasis is an active area of investigation. Two surface receptors that influence NSCLC invasion and metastasis are the hepatocyte growth factor receptor (HGFR/MET) and fibroblast growth factor-inducible 14 (FN14). MET protein is over-expressed in NSCLC tumors and associated with poor clinical outcome and metastasis. FN14 protein is also elevated in NSCLC tumors and positively correlates with tumor cell migration and invasion. In this report, we show that MET and FN14 protein expressions are significantly correlated in human primary NSCLC tumors, and the protein levels of MET and FN14 are elevated in metastatic lesions relative to patient-matched primary tumors. In vitro, HGF/MET activation significantly enhances FN14 mRNA and protein expression. Importantly, depletion of FN14 is sufficient to inhibit MET-driven NSCLC tumor cell migration and invasion in vitro. This work suggests that MET and FN14 protein expressions are associated with the invasive and metastatic potential of NSCLC. Receptor-targeted therapeutics for both MET and FN14 are in clinical development, the use of which may mitigate the metastatic potential of NSCLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Jemal A et al (2011) Global cancer statistics. CA Cancer J Clin 61(2):69–90

    PubMed  Google Scholar 

  2. Heist RS, Engelman JA (2012) SnapShot: non-small cell lung cancer. Cancer Cell 21(3):448 e2

    Article  PubMed  Google Scholar 

  3. Stella GM, Benvenuti S, Comoglio PM (2010) Targeting the MET oncogene in cancer and metastases. Expert Opin Investig Drug 19(11):1381–1394

    Article  CAS  Google Scholar 

  4. Tsuta K et al (2012) c-MET/phospho-MET protein expression and MET gene copy number in non-small cell lung carcinomas. J Thorac Oncol 7(2):331–339

    Article  PubMed  Google Scholar 

  5. Yang Y et al (2008) A selective small molecule inhibitor of c-Met, PHA-665752, reverses lung premalignancy induced by mutant K-ras. Mol Cancer Ther 7(4):952–960

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Bean J et al (2007) MET amplification occurs with or without T790 M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A 104(52):20932–20937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Benedettini E et al (2010) Met activation in non-small cell lung cancer is associated with de novo resistance to EGFR inhibitors and the development of brain metastasis. Am J Pathol 177(1):415–423

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Navab R et al (2009) Co-overexpression of Met and hepatocyte growth factor promotes systemic metastasis in NCI-H460 non-small cell lung carcinoma cells. Neoplasia 11(12):1292–1300

    CAS  PubMed Central  PubMed  Google Scholar 

  9. Feng SL et al (2000) The Fn14 immediate-early response gene is induced during liver regeneration and highly expressed in both human and murine hepatocellular carcinomas. Am J Pathol 156(4):1253–1261

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Tran NL et al (2003) The human Fn14 receptor gene is up-regulated in migrating glioma cells in vitro and overexpressed in advanced glial tumors. Am J Pathol 162(4):1313–1321

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Tran NL et al (2006) Increased fibroblast growth factor-inducible 14 expression levels promote glioma cell invasion via Rac1 and nuclear factor-kappaB and correlate with poor patient outcome. Cancer Res 66(19):9535–9542

    Article  CAS  PubMed  Google Scholar 

  12. Watts GS et al (2007) Identification of Fn14/TWEAK receptor as a potential therapeutic target in esophageal adenocarcinoma. Int J Cancer 121(10):2132–2139

    CAS  PubMed  Google Scholar 

  13. Willis AL et al (2008) The fibroblast growth factor-inducible 14 receptor is highly expressed in HER2-positive breast tumors and regulates breast cancer cell invasive capacity. Mol Cancer Res 6(5):725–734

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Whitsett TG et al (2012) Elevated expression of Fn14 in non-small cell lung cancer correlates with activated EGFR and promotes tumor cell migration and invasion. Am J Pathol 181(1):111–120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Fortin SP et al (2009) Tumor necrosis factor-like weak inducer of apoptosis stimulation of glioma cell survival is dependent on Akt2 function. Mol Cancer Res 7(11):1871–1881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Tran NL et al (2005) The tumor necrosis factor-like weak inducer of apoptosis (TWEAK)-fibroblast growth factor-inducible 14 (Fn14) signaling system regulates glioma cell survival via NFkappaB pathway activation and BCL-XL/BCL-W expression. J Biol Chem 280(5):3483–3492

    Article  CAS  PubMed  Google Scholar 

  17. Zhou H et al (2011) Development and characterization of a potent immunoconjugate targeting the Fn14 receptor on solid tumor cells. Mol Cancer Ther 10(7):1276–1288

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Knudsen BS et al (2009) A novel multipurpose monoclonal antibody for evaluating human c-Met expression in preclinical and clinical settings. Appl Immunohistochem Mol Morphol 17(1):57–67

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Jackson EL et al (2001) Analysis of lung tumor initiation and progression using conditional expression of oncogenic K-ras. Genes Dev 15(24):3243–3248

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Bardeesy N et al (2002) Loss of the Lkb1 tumour suppressor provokes intestinal polyposis but resistance to transformation. Nature 419(6903):162–167

    Article  CAS  PubMed  Google Scholar 

  21. DuPage M, Dooley AL, Jacks T (2009) Conditional mouse lung cancer models using adenoviral or lentiviral delivery of Cre recombinase. Nat Protoc 4(7):1064–1072

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nakayama M et al (2003) Fibroblast growth factor-inducible 14 mediates multiple pathways of TWEAK-induced cell death. J Immunol 170(1):341–348

    Article  CAS  PubMed  Google Scholar 

  23. Fortin Ensign SP et al (2013) The Src homology 3 domain-containing guanine nucleotide exchange factor is overexpressed in high-grade gliomas and promotes tumor necrosis factor-like weak inducer of apoptosis-fibroblast growth factor-inducible 14-induced cell migration and invasion via tumor necrosis factor receptor-associated factor 2. J Biol Chem 288(30):21887–21897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Chuang YY et al (2004) Role of synaptojanin 2 in glioma cell migration and invasion. Cancer Res 64(22):8271–8275

    Article  CAS  PubMed  Google Scholar 

  25. Ji H et al (2007) LKB1 modulates lung cancer differentiation and metastasis. Nature 448(7155):807–810

    Article  CAS  PubMed  Google Scholar 

  26. Chen Z et al (2012) A murine lung cancer co-clinical trial identifies genetic modifiers of therapeutic response. Nature 483(7391):613–617

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Franks LM et al (1976) Metastasizing tumors from serum-supplemented and serum-free cell lines from a C57BL mouse lung tumor. Cancer Res 36(3):1049–1055

    CAS  PubMed  Google Scholar 

  28. Layton MG, Franks LM (1984) Heterogeneity in a spontaneous mouse lung carcinoma: selection and characterisation of stable metastatic variants. Br J Cancer 49(4):415–421

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Birchmeier C et al (2003) Met, metastasis, motility and more. Nat Rev Mol Cell Biol 4(12):915–925

    Article  CAS  PubMed  Google Scholar 

  30. Gherardi E et al (2012) Targeting MET in cancer: rationale and progress. Nat Rev Cancer 12(2):89–103

    Article  CAS  PubMed  Google Scholar 

  31. Webb CP et al (1998) Evidence for a role of Met-HGF/SF during Ras-mediated tumorigenesis/metastasis. Oncogene 17(16):2019–2025

    Article  CAS  PubMed  Google Scholar 

  32. Matteucci E, Bendinelli P, Desiderio MA (2009) Nuclear localization of active HGF receptor Met in aggressive MDA-MB231 breast carcinoma cells. Carcinogenesis 30(6):937–945

    Article  CAS  PubMed  Google Scholar 

  33. Winkles JA (2008) The TWEAK-Fn14 cytokine-receptor axis: discovery, biology and therapeutic targeting. Nat Rev Drug Discov 7(5):411–425

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Sanz-Pamplona R et al (2011) Expression of endoplasmic reticulum stress proteins is a candidate marker of brain metastasis in both ErbB-2 + and ErbB-2- primary breast tumors. Am J Pathol 179(2):564–579

    Article  PubMed Central  PubMed  Google Scholar 

  35. Wang J et al (2013) Clinical correlations and prognostic relevance of Fn14 expression in breast carcinoma. Histol Histopathol 28(7):859–864

    CAS  PubMed  Google Scholar 

  36. Eder JP et al (2009) Novel therapeutic inhibitors of the c-Met signaling pathway in cancer. Clin Cancer Res 15(7):2207–2214

    Article  CAS  PubMed  Google Scholar 

  37. Zhou H et al (2013) The TWEAK receptor Fn14 is a therapeutic target in melanoma: immunotoxins targeting Fn14 receptor for malignant melanoma treatment. J Invest Dermatol 133(4):1052–1062

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Serdar Tuncali, Andrew Nelson, Irene Cherni, and Guy Raz for technical assistance and Drs. Hideo Yagita and Jennifer Michaelson (Biogen Idec) for providing the FN14 monoclonal antibody. This work was supported in part by the NIH grant, R01 CA130940 (N.L.T.), and grants from the St, Joseph’s Foundation and American Lung Association, RG-224607-N (L.J.I.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Timothy G. Whitsett or Nhan L. Tran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whitsett, T.G., Fortin Ensign, S.P., Dhruv, H.D. et al. FN14 expression correlates with MET in NSCLC and promotes MET-driven cell invasion. Clin Exp Metastasis 31, 613–623 (2014). https://doi.org/10.1007/s10585-014-9653-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9653-6

Keywords

Navigation