Skip to main content

Advertisement

Log in

Breast cancer nodal metastasis correlates with tumour and lymph node methylation profiles of Caveolin-1 and CXCR4

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

DNA methylation is the best characterised epigenetic change so far. However, its role in breast cancer metastasis has not as yet been elucidated. The aim of this study was to investigate the differences between the methylation profiles characterising primary tumours and their corresponding positive or negative for metastasis lymph nodes (LN) and correlate these with tumour metastatic potential. Methylation signatures of Caveolin-1, CXCR4, RAR-β, Cyclin D2 and Twist gene promoters were studied in 30 breast cancer primary lesions and their corresponding metastasis-free and tumour-infiltrated LN with Methylation-Specific PCR. CXCR4 and Caveolin-1 expression was further studied by immunohistochemistry. Tumours were typified by methylation of RAR-β and hypermethylation of Cyclin-D2 and Twist gene promoters. Tumour patterns were highly conserved in tumour-infiltrated LN. CXCR4 and Caveolin-1 promoter methylation patterns differentiated between node-negative and metastatic tumours. Nodal metastasis was associated with tumour and lymph node profiles of extended methylation of Caveolin-1 and lack of CXCR4 hypermethylation. Immunodetection studies verified CXCR4 and Caveolin-1 hypermethylation as gene silencing mechanism. Absence of Caveolin-1 expression in stromal cells associated with tumour aggressiveness while strong Caveolin-1 expression in tumour cells correlated with decreased 7-year disease-free survival. Methylation-mediated activation of CXCR4 and inactivation of Caveolin-1 was linked with nodal metastasis while intratumoral Caveolin-1 expression heterogeneity correlated with disease progression. This evidence contributes to the better understanding and, thereby, therapeutic management of breast cancer metastasis process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Li Q, Chen H (2011) Epigenetic modifications of metastasis suppressor genes in colon cancer metastasis. Epigenetics 6:849–852

    Article  CAS  PubMed  Google Scholar 

  2. De Carvalho DD, Sharma S, You JS, Su SF, Taberlay PC, Kelly TK, Yang X, Liang G, Jones PA (2012) DNA methylation screening identifies driver epigenetic events of cancer cell survival. Cancer Cell 21:655–667

    Article  PubMed Central  PubMed  Google Scholar 

  3. Sproul D, Kitchen RR, Nestor CE, Dixon JM, Sims AH, Harrison DJ, Ramsahoye BH, Meehan RR (2012) Tissue of origin determines cancer-associated CpG island promoter hypermethylation patterns. Genome Biol 13:R84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    Google Scholar 

  5. Hurst DR, Welch DR (2011) Metastasis suppressor genes at the interface between the environment and tumor cell growth. Int Rev Cell Mol Biol 286:107–180

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ (2009) Cancer statistics, 2009. CA Cancer J Clin 59:225–249

    Article  PubMed  Google Scholar 

  7. Hill VK, Ricketts C, Bieche I, Vacher S, Gentle D, Lewis C, Maher ER, Latif F (2011) Genome-wide DNA methylation profiling of CpG islands in breast cancer identifies novel genes associated with tumorigenicity. Cancer Res 71:2988–2999

    Article  CAS  PubMed  Google Scholar 

  8. Barekati Z, Radpour R, Lu Q, Bitzer J, Zheng H, Toniolo P, Lenner P, Zhong XY (2012) Methylation signature of lymph node metastases in breast cancer patients. BMC Cancer 12:244

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Feng W, Orlandi R, Zhao N, Carcangiu ML, Tagliabue E, Xu J, Bast RC Jr, Yu Y (2010) Tumor suppressor genes are frequently methylated in lymph node metastases of breast cancers. BMC Cancer 10:378

    Article  PubMed Central  PubMed  Google Scholar 

  10. Fackler MJ, McVeigh M, Mehrotra J, Blum MA, Lange J, Lapides A, Garrett E, Argani P, Sukumar S (2004) Quantitative multiplex methylation-specific PCR assay for the detection of promoter hypermethylation in multiple genes in breast cancer. Cancer Res 64:4442–4452

    Article  CAS  PubMed  Google Scholar 

  11. Borges S, Döppler H, Perez EA, Andorfer CA, Sun Z, Anastasiadis PZ, Thompson EA, Geiger XJ, Storz P (2013) Pharmacologic reversion of epigenetic silencing of the PRKD1 promoter blocks breast tumor cell invasion and metastasis. Breast Cancer Res 15:R66

    Article  PubMed  Google Scholar 

  12. Casey T, Bond J, Tighe S, Hunter T, Lintault L, Patel O, Eneman J, Crocker A, White J, Tessitore J, Stanley M, Harlow S, Weaver D, Muss H, Plaut K (2009) Molecular signatures suggest a major role for stromal cells in development of invasive breast cancer. Breast Cancer Res Treat 114:47–62

    Article  CAS  PubMed  Google Scholar 

  13. Esteller M (2007) Cancer epigenomics: DNA methylomes and histone-modification maps. Nat Rev Genet 8:286–298

    Article  CAS  PubMed  Google Scholar 

  14. Radpour R, Kohler C, Haghighi MM, Fan AX, Holzgreve W, Zhong XY (2009) Methylation profiles of 22 candidate genes in breast cancer using highthroughput MALDI-TOF mass array. Oncogene 28:2969–2978

    Article  CAS  PubMed  Google Scholar 

  15. Evron E, Dooley WC, Umbricht CB, Rosenthal D, Sacchi N, Gabrielson E, Soito AB, Hung DT, Ljung B, Davidson NE, Sukumar S (2001) Detection of breast cancer cells in ductal lavage fluid by methylation-specific PCR. Lancet 357:1335–1336

    Article  CAS  PubMed  Google Scholar 

  16. Tang D, Kryvenko ON, Mitrache N, Do KC, Jankowski M, Chitale DA, Trudeau S, Rundle A, Belinsky SA, Rybicki BA (2013) Methylation of the RARB gene increases prostate cancer risk in black Americans. J Urol 190:317–324

    Article  CAS  PubMed  Google Scholar 

  17. Zhou J, Tian Y, Li J, Lu B, Sun M, Zou Y, Kong R, Luo Y, Shi Y, Wang K, Ji G (2013) miR-206 is down-regulated in breast cancer and inhibits cell proliferation through the up-regulation of cyclinD2. Biochem Biophys Res Commun 433:207–212

    Article  CAS  PubMed  Google Scholar 

  18. Zhao M, Hu HG, Huang J, Zou Q, Wang J, Liu MQ, Zhao Y, Li GZ, Xue S, Wu ZS (2013) Expression and correlation of Twist and gelatinases in breast cancer. Exp Ther Med 6:97–100

    PubMed Central  PubMed  Google Scholar 

  19. Widschwendter M, Berger J, Hermann M, Müller HM, Amberger A, Zeschnigk M, Widschwendter A, Abendstein B, Zeimet AG, Daxenbichler G, Marth C (2000) Methylation and silencing of the retinoic acid receptor-beta2 gene in breast cancer. J Natl Cancer Inst 92:826–832

    Article  CAS  PubMed  Google Scholar 

  20. Maestro R, Dei Tos AP, Hamamori Y, Krasnokutsky S, Sartorelli V, Kedes L, Doglioni C, Beach DH, Hannon GJ (1999) Twist is a potential oncogene that inhibits apoptosis. Genes Dev 13:2207–2217

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Ramos EA, Grochoski M, Braun-Prado K, Seniski GG, Cavalli IJ, Ribeiro EM, Camargo AA, Costa FF, Klassen G (2011) Epigenetic changes of CXCR4 and its ligand CXCL12 as prognostic factors for sporadic breast cancer. PLoS One 6:29461

    Article  Google Scholar 

  22. Carraway HE, Wang S, Blackford A, Guo M, Powers P, Jeter S, Davidson NE, Argani P, Terrell K, Herman JG, Lange JR (2009) Promoter hypermethylation in sentinel lymph nodes as a marker for breast cancer recurrence. Breast Cancer Res Treat 114:315–325

    Article  PubMed Central  PubMed  Google Scholar 

  23. Mori T, Kim J, Yamano T, Takeuchi H, Huang S, Umetani N, Koyanagi K, Hoon DS (2005) Epigenetic Up-regulation of C-C chemokine receptor 7 and C-X-C chemokine receptor 4 expression in melanoma cells. Cancer Res 65:1800–1807

    Article  CAS  PubMed  Google Scholar 

  24. Sato N, Matsubayashi H, Fukushima N, Goggins M (2005) The chemokine receptor CXCR4 is regulated by DNA methylation in pancreatic cancer. Cancer Biol Ther 4:70–76

    Article  CAS  PubMed  Google Scholar 

  25. Furusato B, Mohamed A, Uhlen M, Rhim JS (2010) CXCR4 and cancer. Pathol Int 60:497–505

    Article  CAS  PubMed  Google Scholar 

  26. Chen ST, Lin SY, Yeh KT (2004) Mutational, epigenetic and expressional analyses of caveolin-1 gene in breast cancers. Int J Mol Med 14:577–582

    CAS  PubMed  Google Scholar 

  27. Lin SY, Yeh KT, Chen WT, Chen HC, Chen ST, Chang JG (2004) Promoter CpG methylation of caveolin-1 in sporadic colorectal cancer. Anticancer Res 24:1645–1650

    CAS  PubMed  Google Scholar 

  28. Hehlgans S, Cordes N (2011) Caveolin-1: an essential modulator of cancer cell radio and chemoresistance. Am J Cancer Res 1:521–530

    CAS  PubMed Central  PubMed  Google Scholar 

  29. Sloan EK, Stanley KL, Anderson RL (2004) Caveolin-1 inhibits breast cancer growth and metastasis. Oncogene 23:7893–7897

    Article  CAS  PubMed  Google Scholar 

  30. Simpkins SA, Hanby AM, Holliday DL, Speirs V (2012) Clinical and functional significance of loss of caveolin-1 expression in breast cancer-associated fibroblasts. J Pathol 227:490–498

    Article  CAS  PubMed  Google Scholar 

  31. Sherif ZA, Sultan AS (2012) Divergent control of Cav-1 expression in non-cancerous Li-Fraumeni syndrome and human cancer cell lines. Cancer Biol Ther 14:29–38

    Article  PubMed  Google Scholar 

  32. Qian N, Ueno T, Kawaguchi-Sakita N et al (2011) Prognostic significance of tumour/stromal caveolin-1 expression in breast cancer patients. Cancer Sci 102:1590–1596

    Article  CAS  PubMed  Google Scholar 

  33. Fiucci G, Ravid D, Reich R, Liscovitch M (2002) Caveolin-1 inhibits anchorage independent growth, anoikis and invasiveness in MCF-7 human breast cancer cells. Oncogene 21:2365–2375

    Article  CAS  PubMed  Google Scholar 

  34. Sotgia F, Del Galdo F, Casimiro MC, Bonuccelli G, Mercier I, Whitaker-Menezes D, Daumer KM, Zhou J, Wang C et al (2008) Caveolin-1−/− null mammary stromal fibroblasts share characteristics with human breast cancer-associated fibroblasts. Am J Pathol 174:746–761

    Article  Google Scholar 

  35. Cat B, Stuhlmann D, Steinbrenner H, Alili L, Holtkotter O, Sies H, Brenneisen P (2006) Enhancement of tumor invasion depends on transdifferentiation of skin fibroblasts mediated by reactive oxygen species. J Cell Sci 119:2727–2738

    Article  CAS  PubMed  Google Scholar 

  36. Martinez-Outschoorn UE, Trimmer C, Lin Z, Whitaker-Menezes D, Chiavarina B, Zhou J, Wang C, Pavlides S, Martinez-Cantarin MP et al (2010) Autophagy in cancer associated fibroblasts promotes tumor cell survival: role of hypoxia, HIF1 induction and NFκB activation in the tumor stromal microenvironment. Cell Cycle 9:3515–3533

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project has been sponsored with funds from the National and Kapodistrian University of Athens, Special Account for Research Grants (70/4/8111).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonidas Alevizos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alevizos, L., Kataki, A., Derventzi, A. et al. Breast cancer nodal metastasis correlates with tumour and lymph node methylation profiles of Caveolin-1 and CXCR4. Clin Exp Metastasis 31, 511–520 (2014). https://doi.org/10.1007/s10585-014-9645-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9645-6

Keywords

Navigation