Skip to main content

Advertisement

Log in

Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis remains the major cause of therapeutic failure, poor prognosis and high mortality in breast and prostate cancer patients. Aberrant microenvironments including hypoxia and acidic pH are common features of most solid tumors that have been long associated with enhanced metastasis and poor patient outcomes. Novel approaches to reduce metastatic incidences and improve overall survival of cancer patients clearly are needed. The crucial role of Cathepsin L (CTSL) in the dissemination of tumor cells has led to the development of novel cathepsin L inhibition strategies. The present study evaluated the ability of KGP94, a small molecule inhibitor of CTSL, to impair the metastatic phenotype of prostate (PC-3ML) and breast (MDA-MB-231) cancer cells both under normal and aberrant microenvironmental conditions. To assess the role of CTSL in hypoxia and acidosis triggered metastasis associated cell functions, secreted CTSL levels were determined under conditions pertinent to the tumor microenvironment. Acute exposures to hypoxic or acidic conditions significantly elevated secreted CTSL levels either through an increase in intracellular CTSL levels or through activation of lysosomal exocytosis or both, depending on the tumor type. Increases in CTSL secretion closely paralleled enhanced tumor cell migration and invasion suggesting that CTSL could be an essential factor in tumor microenvironment triggered metastasis. Importantly, KGP94 treatment led to marked attenuation of tumor cell invasion and migration under both normal and aberrant microenvironmental conditions suggesting that it may have significant utility as an anti-metastatic agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E (2010) Cancer statistics, 2010. CA Cancer J Clin 60:277–300

    Article  PubMed  Google Scholar 

  2. Duffy MJ (1992) The role of proteolytic enzymes in cancer invasion and metastasis. Clin Exp Metastasis 10:145–155

    Article  PubMed  CAS  Google Scholar 

  3. Gocheva V, Joyce JA (2007) Cysteine cathepsins and the cutting edge of cancer invasion. Cell Cycle 6:60–64

    Article  PubMed  CAS  Google Scholar 

  4. Laufs S, Schumacher J, Allgayer H (2006) Urokinase-receptor (u-PAR): an essential player in multiple games of cancer: a review on its role in tumor progression, invasion, metastasis, proliferation/dormancy, clinical outcome and minimal residual disease. Cell Cycle 5:1760–1771

    Article  PubMed  CAS  Google Scholar 

  5. Chauhan SS, Goldstein LJ, Gottesman MM (1991) Expression of cathepsin L in human tumors. Cancer Res 51:1478–1481

    PubMed  CAS  Google Scholar 

  6. Gottesman MM, Sobel ME (1980) Tumor promoters and Kirsten sarcoma virus increase synthesis of a secreted glycoprotein by regulating levels of translatable mRNA. Cell 19:449–455

    Article  PubMed  CAS  Google Scholar 

  7. Prence EM, Dong JM, Sahagian GG (1990) Modulation of the transport of a lysosomal enzyme by PDGF. J Cell Biol 110:319–326

    Article  PubMed  CAS  Google Scholar 

  8. Stearns NA, Dong JM, Pan JX, Brenner DA, Sahagian GG (1990) Comparison of cathepsin L synthesized by normal and transformed cells at the gene, message, protein, and oligosaccharide levels. Arch Biochem Biophys 283:447–457

    Article  PubMed  CAS  Google Scholar 

  9. Chambers AF, Colella R, Denhardt DT, Wilson SM (1992) Increased expression of cathepsins L and B and decreased activity of their inhibitors in metastatic, ras-transformed NIH 3T3 cells. Mol Carcinog 5:238–245

    Article  PubMed  CAS  Google Scholar 

  10. Ishidoh K, Kominami E (1995) Procathepsin L degrades extracellular matrix proteins in the presence of glycosaminoglycans in vitro. Biochem Biophys Res Commun 217:624–631

    Article  PubMed  CAS  Google Scholar 

  11. Mason RW, Johnson DA, Barrett AJ, Chapman HA (1986) Elastinolytic activity of human cathepsin L. Biochem J 233:925–927

    PubMed  CAS  Google Scholar 

  12. Abboud-Jarrous G, Atzmon R, Peretz T et al (2008) Cathepsin L is responsible for processing and activation of proheparanase through multiple cleavages of a linker segment. J Biol Chem 283:18167–18176

    Article  PubMed  CAS  Google Scholar 

  13. Everts V, Korper W, Hoeben KA et al (2006) Osteoclastic bone degradation and the role of different cysteine proteinases and matrix metalloproteinases: differences between calvaria and long bone. J Bone Miner Res 21:1399–1408

    Article  PubMed  CAS  Google Scholar 

  14. Laurent-Matha V, Derocq D, Prebois C, Katunuma N, Liaudet-Coopman E (2006) Processing of human cathepsin D is independent of its catalytic function and auto-activation: involvement of cathepsins L and B. J Biochem 139:363–371

    Article  PubMed  CAS  Google Scholar 

  15. Gillies RJ, Schornack PA, Secomb TW, Raghunand N (1999) Causes and effects of heterogeneous perfusion in tumors. Neoplasia 1:197–207

    Article  PubMed  CAS  Google Scholar 

  16. Lunt SJ, Chaudary N, Hill RP (2009) The tumor microenvironment and metastatic disease. Clin Exp Metastasis 26:19–34

    Article  PubMed  Google Scholar 

  17. Schwickert G, Walenta S, Sundfor K, Rofstad EK, Mueller-Klieser W (1995) Correlation of high lactate levels in human cervical cancer with incidence of metastasis. Cancer Res 55:4757–4759

    PubMed  CAS  Google Scholar 

  18. Walenta S, Salameh A, Lyng H et al (1997) Correlation of high lactate levels in head and neck tumors with incidence of metastasis. Am J Pathol 150:409–415

    PubMed  CAS  Google Scholar 

  19. Chaudary N, Hill RP (2007) Hypoxia and metastasis. Clin Cancer Res 13:1947–1949

    Article  PubMed  CAS  Google Scholar 

  20. Cairns RA, Kalliomaki T, Hill RP (2001) Acute (cyclic) hypoxia enhances spontaneous metastasis of KHT murine tumors. Cancer Res 61:8903–8908

    PubMed  CAS  Google Scholar 

  21. Rofstad EK, Galappathi K, Mathiesen B, Ruud EB (2007) Fluctuating and diffusion-limited hypoxia in hypoxia-induced metastasis. Clin Cancer Res 13:1971–1978

    Article  PubMed  CAS  Google Scholar 

  22. Zajc I, Sever N, Bervar A, Lah TT (2002) Expression of cysteine peptidase cathepsin L and its inhibitors stefins A and B in relation to tumorigenicity of breast cancer cell lines. Cancer Lett 187:185–190

    Article  PubMed  CAS  Google Scholar 

  23. Kishore Kumar GD, Chavarria GE, Charlton-Sevcik AK et al (2010) Design, synthesis, and biological evaluation of potent thiosemicarbazone based cathepsin L inhibitors. Bioorg Med Chem Lett 20:1415–1419

    Article  PubMed  CAS  Google Scholar 

  24. Chavarria GE, Horsman MR, Arispe WM et al (2012) Initial evaluation of the antitumour activity of KGP94, a functionalized benzophenone thiosemicarbazone inhibitor of cathepsin L. Eur J Med Chem 58:568–572

    Article  PubMed  CAS  Google Scholar 

  25. Wang M, Stearns ME (1991) Isolation and characterization of PC-3 human prostatic tumor sublines which preferentially metastasize to select organs in S.C.I.D mice. Differentiation 48:115–125

    Article  PubMed  CAS  Google Scholar 

  26. Rae JM, Creighton CJ, Meck JM, Haddad BR, Johnson MD (2007) MDA-MB-435 cells are derived from M14 melanoma cells–a loss for breast cancer, but a boon for melanoma research. Breast Cancer Res Treat 104:13–19

    Article  PubMed  Google Scholar 

  27. Chambers AF (2009) MDA-MB-435 and M14 cell lines: identical but not M14 melanoma? Cancer Res 69:5292–5293

    Article  PubMed  CAS  Google Scholar 

  28. Urquidi V, Sloan D, Kawai K et al (2002) Contrasting expression of thrombospondin-1 and osteopontin correlates with absence or presence of metastatic phenotype in an isogenic model of spontaneous human breast cancer metastasis. Clin Cancer Res 8:61–74

    PubMed  CAS  Google Scholar 

  29. Dai Y, Siemann DW (2012) Constitutively active c-Met kinase in PC-3 cells is autocrine-independent and can be blocked by the Met kinase inhibitor BMS-777607. BMC Cancer 12:198

    Article  PubMed  CAS  Google Scholar 

  30. Dai Y, Bae K, Siemann DW (2011) Impact of hypoxia on the metastatic potential of human prostate cancer cells. Int J Radiat Oncol Biol Phys 81:521–528

    Article  PubMed  Google Scholar 

  31. Cuvier C, Jang A, Hill RP (1997) Exposure to hypoxia, glucose starvation and acidosis: effect on invasive capacity of murine tumor cells and correlation with cathepsin (L+B) secretion. Clin Exp Metastasis 15:19–25

    Article  PubMed  CAS  Google Scholar 

  32. Lankelma JM, Voorend DM, Barwari T et al (2010) Cathepsin L, target in cancer treatment? Life Sci 86:225–233

    Article  PubMed  CAS  Google Scholar 

  33. Leto G, Sepporta MV, Crescimanno M, Flandina C, Tumminello FM (2010) Cathepsin L in metastatic bone disease: therapeutic implications. Biol Chem 391:655–664

    Article  PubMed  CAS  Google Scholar 

  34. Sommers CL, Byers SW, Thompson EW, Torri JA, Gelmann EP (1994) Differentiation state and invasiveness of human breast cancer cell lines. Breast Cancer Res Treat 31:325–335

    Article  PubMed  CAS  Google Scholar 

  35. Turk B, Turk D, Turk V (2000) Lysosomal cysteine proteases: more than scavengers. Biochim Biophys Acta 1477:98–111

    Article  PubMed  CAS  Google Scholar 

  36. Carini R, Castino R, De Cesaris MG et al (2004) Preconditioning-induced cytoprotection in hepatocytes requires Ca(2+)-dependent exocytosis of lysosomes. J Cell Sci 117:1065–1077

    Article  PubMed  CAS  Google Scholar 

  37. Lee M, Fridman R, Mobashery S (2004) Extracellular proteases as targets for treatment of cancer metastases. Chem Soc Rev 33:401–409

    Article  PubMed  CAS  Google Scholar 

  38. Dong JM, Prence EM, Sahagian GG (1989) Mechanism for selective secretion of a lysosomal protease by transformed mouse fibroblasts. J Biol Chem 264:7377–7383

    PubMed  CAS  Google Scholar 

  39. Gocheva V, Zeng W, Ke D et al (2006) Distinct roles for cysteine cathepsin genes in multistage tumorigenesis. Genes Dev 20:543–556

    Article  PubMed  CAS  Google Scholar 

  40. Foekens JA, Kos J, Peters HA et al (1998) Prognostic significance of cathepsins B and L in primary human breast cancer. J Clin Oncol 16:1013–1021

    PubMed  CAS  Google Scholar 

  41. Thomssen C, Schmitt M, Goretzki L et al (1995) Prognostic value of the cysteine proteases cathepsins B and cathepsin L in human breast cancer. Clin Cancer Res 1:741–746

    PubMed  CAS  Google Scholar 

  42. Friedrich B, Jung K, Lein M et al (1999) Cathepsins B, H, L and cysteine protease inhibitors in malignant prostate cell lines, primary cultured prostatic cells and prostatic tissue. Eur J Cancer 35:138–144

    Article  PubMed  CAS  Google Scholar 

  43. Kos J, Krasovec M, Cimerman N et al (2000) Cysteine proteinase inhibitors stefin A, stefin B, and cystatin C in sera from patients with colorectal cancer: relation to prognosis. Clin Cancer Res 6:505–511

    PubMed  CAS  Google Scholar 

  44. Strojan P, Oblak I, Svetic B, Smid L, Kos J (2004) Cysteine proteinase inhibitor cystatin C in squamous cell carcinoma of the head and neck: relation to prognosis. Br J Cancer 90:1961–1968

    Article  PubMed  CAS  Google Scholar 

  45. Kolwijck E, Massuger LF, Thomas CM et al (2010) Cathepsins B, L and cystatin C in cyst fluid of ovarian tumors. J Cancer Res Clin Oncol 136:771–778

    Article  PubMed  CAS  Google Scholar 

  46. Ervin H, Cox JL (2005) Late stage inhibition of hematogenous melanoma metastasis by cystatin C over-expression. Cancer Cell Int 5:14

    Article  PubMed  Google Scholar 

  47. Kirschke H, Eerola R, Hopsu-Havu VK, Bromme D, Vuorio E (2000) Antisense RNA inhibition of cathepsin L expression reduces tumorigenicity of malignant cells. Eur J Cancer 36:787–795

    Article  PubMed  CAS  Google Scholar 

  48. Yang Z, Cox JL (2007) Cathepsin L increases invasion and migration of B16 melanoma. Cancer Cell Int 7:8

    Article  PubMed  Google Scholar 

  49. Fortenberry YM, Brandal S, Bialas RC, Church FC (2010) Protein C inhibitor regulates both cathepsin L activity and cell-mediated tumor cell migration. Biochim Biophys Acta 1800:580–590

    Article  PubMed  CAS  Google Scholar 

  50. Reiser J, Oh J, Shirato I et al (2004) Podocyte migration during nephrotic syndrome requires a coordinated interplay between cathepsin L and alpha3 integrin. J Biol Chem 279:34827–34832

    Article  PubMed  CAS  Google Scholar 

  51. Chung JH, Im EK, Jin TW et al (2011) Cathepsin L derived from skeletal muscle cells transfected with bFGF promotes endothelial cell migration. Exp Mol Med 43:179–188

    Article  PubMed  CAS  Google Scholar 

  52. Schlappack OK, Zimmermann A, Hill RP (1991) Glucose starvation and acidosis: effect on experimental metastatic potential, DNA content and MTX resistance of murine tumour cells. Br J Cancer 64:663–670

    Article  PubMed  CAS  Google Scholar 

  53. Steffan JJ, Snider JL, Skalli O, Welbourne T, Cardelli JA (2009) Na+/H+ exchangers and RhoA regulate acidic extracellular pH-induced lysosome trafficking in prostate cancer cells. Traffic 10:737–753

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Kevin Pinney of Baylor University for providing KGP94 and Drs. Yao Dai and Kyung-Mi Bae as well as Sharon Lepler for scientific input. The H4A3 mouse LAMP1 antibody developed by J. Thomas August and James E.K. Hildreth was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the NICHD and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242. These studies were supported in part by a Grant from the National Cancer Institute (US Public Health Service Grant R01 CA169300).

Conflict of interest

The authors have no conflict of interest to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhivya R. Sudhan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sudhan, D.R., Siemann, D.W. Cathepsin L inhibition by the small molecule KGP94 suppresses tumor microenvironment enhanced metastasis associated cell functions of prostate and breast cancer cells. Clin Exp Metastasis 30, 891–902 (2013). https://doi.org/10.1007/s10585-013-9590-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9590-9

Keywords

Navigation